OFFSET
1,2
EXAMPLE
1/a(1)+1/a(2)+1/a(3)+1/a(4) = (1+1/7+1/45+1/401) which continued fraction is {1, 5, 1, 29, 1, 4, 3, 1, 1, 18} and 1+5+1+29+1+4+3+1+1+18 = 64 = 4^3.
MATHEMATICA
a[1] = 1; a[n_] := a[n] = (s = Sum[1/a[i], {i, 1, n - 1}]; While[Plus @@ ContinuedFraction[s + 1/k] != n^3, k++ ]; k); k = 1; Do[ Print[ a[n]], {n, 1, 31}]
PROG
(PARI) s=1; t=1; for(n=2, 31, s=s+1/t; while(abs(n^3+1-sum(i=1, length(contfrac(s+1/t)), component(contfrac(s+1/t), i)))>0, t++); print1(t, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 17 2002
STATUS
approved