login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071971
a(1)=1, a(n) is the smallest integer > a(n-1) such that the sum of elements of the simple continued fraction for S(n)=1/a(1)+1/a(2)+...+1/a(n) equals n^3.
0
1, 7, 45, 401, 719, 1136, 5613, 6358, 12448, 24739, 28082, 42850, 59604, 78928, 81119, 169213, 214725, 309015, 432821, 496399, 706170, 725188, 1163780, 2284457, 2941839, 3857806, 4133465, 5890433, 6190258, 6286719, 6888119
OFFSET
1,2
EXAMPLE
1/a(1)+1/a(2)+1/a(3)+1/a(4) = (1+1/7+1/45+1/401) which continued fraction is {1, 5, 1, 29, 1, 4, 3, 1, 1, 18} and 1+5+1+29+1+4+3+1+1+18 = 64 = 4^3.
MATHEMATICA
a[1] = 1; a[n_] := a[n] = (s = Sum[1/a[i], {i, 1, n - 1}]; While[Plus @@ ContinuedFraction[s + 1/k] != n^3, k++ ]; k); k = 1; Do[ Print[ a[n]], {n, 1, 31}]
PROG
(PARI) s=1; t=1; for(n=2, 31, s=s+1/t; while(abs(n^3+1-sum(i=1, length(contfrac(s+1/t)), component(contfrac(s+1/t), i)))>0, t++); print1(t, ", "))
CROSSREFS
Cf. A071183.
Sequence in context: A134437 A018927 A001266 * A370253 A337553 A006680
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 17 2002
STATUS
approved