login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018927 For each permutation p of {1,2,...,n} define maxjump(p) = max(p(i) - i); a(n) is sum of maxjumps of all p. 7
0, 1, 7, 45, 313, 2421, 20833, 198309, 2073793, 23664021, 292834513, 3907994949, 55967406433, 856355084661, 13944569166193, 240803714700069, 4395998055854593, 84596337986326101, 1711691067680320273, 36329581765125539589, 807099012174816776353 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..448

Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, Toufik Mansour, and Mark Shattuck, Pushes in permutations, J. Comb. Math. Comb. Comp. (2020) Vol. 115, 77-95.

FORMULA

a(n) = Sum_{k=0..n-1} k*k!*((k+1)^(n-k)-k^(n-k)).

a(n) = Sum_{k=0..n*(n-1)/2} k*A127452(n-1,k). - Paul D. Hanna, Jan 15 2007

a(n) = Sum_{k=0..n-1} k * A180190(n,k). - Alois P. Heinz, Feb 21 2019

MATHEMATICA

Table[Sum[k*k!*((k+1)^(n-k)-k^(n-k)), {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 17 2014 *)

CROSSREFS

Cf. A056151, A127452, A130153, A180190.

Sequence in context: A143835 A103719 A134437 * A001266 A071971 A337553

Adjacent sequences: A018924 A018925 A018926 * A018928 A018929 A018930

KEYWORD

nonn

AUTHOR

Emeric Deutsch

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 07:12 EST 2022. Contains 358422 sequences. (Running on oeis4.)