login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056151
Distribution of maximum inversion table entry.
5
1, 1, 1, 1, 3, 2, 1, 7, 10, 6, 1, 15, 38, 42, 24, 1, 31, 130, 222, 216, 120, 1, 63, 422, 1050, 1464, 1320, 720, 1, 127, 1330, 4686, 8856, 10920, 9360, 5040, 1, 255, 4118, 20202, 50424, 80520, 91440, 75600, 40320, 1, 511, 12610, 85182, 276696, 558120, 795600, 851760, 685440, 362880
OFFSET
1,5
COMMENTS
T(n,k) is the number of permutations p of [n] such that max(p(i) - i) = k. Example: T(3,0) = 1 because for p = 123 we have max(p(i) - i) = 0; T(3,1) = 3 because for p = 132, 213, 231 we have max(p(i) - i) = 1; T(3,2) = 2 because for p = 312, 321 we have max(p(i) - i) = 2. - Emeric Deutsch, Nov 12 2004
T(n,k) is the number of permutations of [n] for which the first subcedance occurs at position n + 2 - k. A subcedance of pi occurs at position i if i>pi(i). For example, with n = 3 and k = 2, T(n,k) = 3 counts 132, 231, 321 in each of which the first subcedance occurs at position n+2-k = 3. - David Callan, Dec 14 2021
REFERENCES
R. Sedgewick and Ph. Flajolet, "An Introduction to the Analysis of Algorithms", Addison-Wesley, 1996, ISBN 0-201-40009-X, table 6.10 (page 356)
LINKS
Mathilde Bouvel, Lapo Cioni, and Luca Ferrari, Preimages under the bubblesort operator, arXiv:2204.12936 [math.CO], 2022. See Table 1 p. 12.
E. Deutsch, I. M. Gessel and D. Callan, Problem 10634: Permutation Parameters with the Same Distribution, Amer. Math. Monthly, 107 (2000), 567-568.
FORMULA
Table[ -((-1 + k)^(1 - k + n)*(-1 + k)!) + k^(-k + n)*k!, {n, 1, 9}, {k, 1, n} ]
T(n, k) = k!(k+1)^(n-k) - (k-1)!k^(n-k+1) if 0<k<=n; T(n, 0)=1. - Emeric Deutsch, Nov 12 2004
From Peter Luschny, Dec 14 2021: (Start)
We assume T with offset 0.
T(n, k) = k!^2 * (n-k)! * [y^k] [x^(n-k)] (exp(exp(x)*y + x)*(exp(x)*y - y + 1)).
T(n, k) = k!*A343237(n, k). (End)
EXAMPLE
Triangle starts:
1;
1, 1;
1, 3, 2;
1, 7, 10, 6;
1, 15, 38, 42, 24;
1, 31, 130, 222, 216, 120;
1, 63, 422, 1050, 1464, 1320, 720;
1, 127, 1330, 4686, 8856, 10920, 9360, 5040;
1, 255, 4118, 20202, 50424, 80520, 91440, 75600, 40320;
MAPLE
T:=proc(n, k) if k>0 and k<=n then k!*(k+1)^(n-k)-(k-1)!*k^(n-k+1) elif k=0 then 1 else 0 fi end: TT:=(n, k)->T(n, k-1): matrix(10, 10, TT);
# Alternative, assuming offset 0:
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(coeff(ser, x, n), y, 12):
T := (n, k) -> k!^2 * (n-k)! * coeff(cx(n - k), y, k):
for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Dec 14 2021
MATHEMATICA
T[_, 0] = 1; T[n_, k_] := k! (k + 1)^(n - k) - (k - 1)! k^(n - k + 1);
Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 03 2017 *)
CROSSREFS
Columns and diagonals give A000225, A018927, A056182, A000142, A056197.
Cf. A343237.
Sequence in context: A367564 A171128 A122832 * A134436 A306226 A186370
KEYWORD
nonn,tabl,easy
AUTHOR
Wouter Meeussen, Aug 05 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000
STATUS
approved