login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367564
Triangular array read by rows: T(n, k) = binomial(n, k) * A001333(n - k).
0
1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 17, 28, 18, 4, 1, 41, 85, 70, 30, 5, 1, 99, 246, 255, 140, 45, 6, 1, 239, 693, 861, 595, 245, 63, 7, 1, 577, 1912, 2772, 2296, 1190, 392, 84, 8, 1, 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1, 3363, 13930, 25965, 28680, 20790, 10332, 3570, 840, 135, 10, 1
OFFSET
0,4
FORMULA
From Werner Schulte, Nov 26 2023: (Start)
The row polynomials p(n, x) = Sum_{k=0..n} T(n, k) * x^k satisfy:
a) p'(n, x) = n * p(n-1, x) where p' is the first derivative of p;
b) p(0, x) = 1, p(1, x) = 1 + x and p(n, x) = (2+2*x) * p(n-1, x) + (1-2*x-x^2) * p(n-2, x) for n > 1.
T(n, 0) = A001333(n) for n >= 0 and T(n, k) = T(n-1, k-1) * n / k for 0 < k <= n.
G.f.: (1 - (1+x) * t) / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 3, 2, 1;
[3] 7, 9, 3, 1;
[4] 17, 28, 18, 4, 1;
[5] 41, 85, 70, 30, 5, 1;
[6] 99, 246, 255, 140, 45, 6, 1;
[7] 239, 693, 861, 595, 245, 63, 7, 1;
[8] 577, 1912, 2772, 2296, 1190, 392, 84, 8, 1;
[9] 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1;
MAPLE
P := proc(n) option remember; ifelse(n <= 1, 1, 2*P(n - 1) + P(n - 2)) end:
T := (n, k) -> P(n - k) * binomial(n, k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
MATHEMATICA
P[n_] := P[n] = If[n <= 1, 1, 2 P[n - 1] + P[n - 2]];
T[n_, k_] := P[n - k] Binomial[n, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 10 2024, after Peter Luschny *)
CROSSREFS
Cf. A001333 (column 0), A006012 (row sums), A367211.
Sequence in context: A145035 A359413 A192020 * A171128 A122832 A056151
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 25 2023
STATUS
approved