login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows: T(n, k) = binomial(n, k) * A001333(n - k).
0

%I #13 Oct 10 2024 08:18:24

%S 1,1,1,3,2,1,7,9,3,1,17,28,18,4,1,41,85,70,30,5,1,99,246,255,140,45,6,

%T 1,239,693,861,595,245,63,7,1,577,1912,2772,2296,1190,392,84,8,1,1393,

%U 5193,8604,8316,5166,2142,588,108,9,1,3363,13930,25965,28680,20790,10332,3570,840,135,10,1

%N Triangular array read by rows: T(n, k) = binomial(n, k) * A001333(n - k).

%F From _Werner Schulte_, Nov 26 2023: (Start)

%F The row polynomials p(n, x) = Sum_{k=0..n} T(n, k) * x^k satisfy:

%F a) p'(n, x) = n * p(n-1, x) where p' is the first derivative of p;

%F b) p(0, x) = 1, p(1, x) = 1 + x and p(n, x) = (2+2*x) * p(n-1, x) + (1-2*x-x^2) * p(n-2, x) for n > 1.

%F T(n, 0) = A001333(n) for n >= 0 and T(n, k) = T(n-1, k-1) * n / k for 0 < k <= n.

%F G.f.: (1 - (1+x) * t) / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)

%e Triangle T(n, k) starts:

%e [0] 1;

%e [1] 1, 1;

%e [2] 3, 2, 1;

%e [3] 7, 9, 3, 1;

%e [4] 17, 28, 18, 4, 1;

%e [5] 41, 85, 70, 30, 5, 1;

%e [6] 99, 246, 255, 140, 45, 6, 1;

%e [7] 239, 693, 861, 595, 245, 63, 7, 1;

%e [8] 577, 1912, 2772, 2296, 1190, 392, 84, 8, 1;

%e [9] 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1;

%p P := proc(n) option remember; ifelse(n <= 1, 1, 2*P(n - 1) + P(n - 2)) end:

%p T := (n, k) -> P(n - k) * binomial(n, k):

%p for n from 0 to 9 do seq(T(n, k), k = 0..n) od;

%t P[n_] := P[n] = If[n <= 1, 1, 2 P[n - 1] + P[n - 2]];

%t T[n_, k_] := P[n - k] Binomial[n, k];

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 10 2024, after _Peter Luschny_ *)

%Y Cf. A001333 (column 0), A006012 (row sums), A367211.

%K nonn,tabl

%O 0,4

%A _Peter Luschny_, Nov 25 2023