OFFSET
0,5
LINKS
Laradji, A. and Umar, A., Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations , Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.8. [From Abdullahi Umar, Oct 07 2008]
FORMULA
T(n,k) = (n-k+1)*Sum_{j=1..n} binomial(n,j)*binomial(k+j-2,j-1)/n for k > 0.
T(n,k) = 2*T(n-1,k) - T(n-1,k-1) + T(n,k-1) for n >= k >= 1; T(n,0)=1, T(n,1) = -1 + 2^n.
EXAMPLE
T(3,2) = 8 because there are exactly 8 order-decreasing and order-preserving partial transformations (of a 3-chain) of waist 2, namely: 2->2, 3->2, (1,2)->(1,2), (1,3)->(1,2), (2,3)->(1,2), (2,3)->(2,2), (1,2,3)->(1,1,2), (1,2,3)->(1,2,2).
Table begins
1;
1, 1;
1, 3, 2;
1, 7, 8, 6;
1, 15, 24, 28, 22;
1, 31, 64, 96, 112, 90;
1, 63, 160, 288, 416, 484, 394;
1, 127, 384, 800, 1344, 1896, 2200, 1806;
MAPLE
A145035 := proc(n, k) if k = 0 then 1; else (n-k+1)*sum(binomial(n, j)*binomial(k+j-2, j-1), j=1..n)/n ; end if; end proc: # R. J. Mathar, Jun 11 2011
CROSSREFS
KEYWORD
AUTHOR
Abdullahi Umar, Sep 30 2008
STATUS
approved