login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145035
T(n,k) is the number of order-decreasing and order-preserving partial transformations (of an n-chain) of waist k (waist(alpha) = max(Im(alpha))).
1
1, 1, 1, 1, 3, 2, 1, 7, 8, 6, 1, 15, 24, 28, 22, 1, 31, 64, 96, 112, 90, 1, 63, 160, 288, 416, 484, 394, 1, 127, 384, 800, 1344, 1896, 2200, 1806, 1, 255, 896, 2112, 4000, 6448, 8952, 10364, 8558, 1, 511, 2048, 5376, 11264, 20160, 31616, 43392, 50144, 41586, 1, 1023, 4608, 13312, 30464, 59520, 102592, 157760, 214656, 247684, 206098
OFFSET
0,5
LINKS
Laradji, A. and Umar, A., Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations , Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.8. [From Abdullahi Umar, Oct 07 2008]
FORMULA
T(n,k) = (n-k+1)*Sum_{j=1..n} binomial(n,j)*binomial(k+j-2,j-1)/n for k > 0.
T(n,k) = 2*T(n-1,k) - T(n-1,k-1) + T(n,k-1) for n >= k >= 1; T(n,0)=1, T(n,1) = -1 + 2^n.
EXAMPLE
T(3,2) = 8 because there are exactly 8 order-decreasing and order-preserving partial transformations (of a 3-chain) of waist 2, namely: 2->2, 3->2, (1,2)->(1,2), (1,3)->(1,2), (2,3)->(1,2), (2,3)->(2,2), (1,2,3)->(1,1,2), (1,2,3)->(1,2,2).
Table begins
1;
1, 1;
1, 3, 2;
1, 7, 8, 6;
1, 15, 24, 28, 22;
1, 31, 64, 96, 112, 90;
1, 63, 160, 288, 416, 484, 394;
1, 127, 384, 800, 1344, 1896, 2200, 1806;
MAPLE
A145035 := proc(n, k) if k = 0 then 1; else (n-k+1)*sum(binomial(n, j)*binomial(k+j-2, j-1), j=1..n)/n ; end if; end proc: # R. J. Mathar, Jun 11 2011
CROSSREFS
A006318 gives row sums of T(n, k).
Sequence in context: A130462 A373506 A059380 * A359413 A192020 A367564
KEYWORD
nonn,easy,tabl
AUTHOR
Abdullahi Umar, Sep 30 2008
STATUS
approved