login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is one-half the number of permutations of length n with exactly n-k rising or falling successions, for n >= 1, 1 <= k <= n. T(1,1) = 1 by convention.
9

%I #25 Jul 26 2022 03:04:47

%S 1,1,0,1,2,0,1,5,5,1,1,8,24,20,7,1,11,60,128,115,45,1,14,113,444,835,

%T 790,323,1,17,183,1099,3599,6423,6217,2621,1,20,270,2224,11060,32484,

%U 56410,55160,23811,1,23,374,3950,27152,118484,325322,554306,545135,239653

%N Triangle read by rows: T(n,k) is one-half the number of permutations of length n with exactly n-k rising or falling successions, for n >= 1, 1 <= k <= n. T(1,1) = 1 by convention.

%C (1/2) times number of permutations of 12...n such that exactly n-k of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

%H Alois P. Heinz, <a href="/A010028/b010028.txt">Rows n = 1..141, flattened</a>

%H J. Riordan, <a href="http://projecteuclid.org/euclid.aoms/1177700181">A recurrence for permutations without rising or falling successions</a>, Ann. Math. Statist. 36 (1965), 708-710.

%F For n>1, coefficient of t^(n-k) in S[n](t) defined in A002464, divided by 2.

%e Triangle T(n,k) begins:

%e 1;

%e 1, 0;

%e 1, 2, 0;

%e 1, 5, 5, 1;

%e 1, 8, 24, 20, 7;

%e 1, 11, 60, 128, 115, 45;

%e 1, 14, 113, 444, 835, 790, 323;

%e 1, 17, 183, 1099, 3599, 6423, 6217, 2621;

%e ...

%p S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

%p [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

%p -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

%p end:

%p T:= (n, k)-> ceil(coeff(S(n), t, n-k)/2):

%p seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Dec 21 2012

%t S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2]-(1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; T[n_, k_] := Ceiling[Coefficient[S[n], t, n-k]/2]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Jan 14 2014, translated from _Alois P. Heinz_'s Maple code *)

%Y Diagonals give A001266 (and A002464), A000130, A000349, A001267, A001268.

%Y Triangle in A086856 transposed. Cf. A001100.

%Y Row sums give A001710.

%K tabl,nonn

%O 1,5

%A _N. J. A. Sloane_