The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002462 Coefficients of Legendre polynomials.
(Formerly M4633 N1979)
1, 1, 9, 50, 1225, 7938, 106722, 736164, 41409225, 295488050, 4266847442, 31102144164, 914057459042, 6760780022500, 100583849722500, 751920156592200, 90324408810638025, 680714748752836050, 10294760089163261250, 78080479568224402500, 2375208188465386324050 (list; graph; refs; listen; history; text; internal format)



Appears to divide A002894(n+1). - Ralf Stephan, Aug 23 2004

Constant term of the Legendre polynomials of even order when they are expressed in terms of the cosine function (see 22.3.13 from Abramowitz & Stegun) with the denominators factored out. Also, constant term of the Tisserand functions of even order for the planar case with the denominators factored out (see Table 1 from Laskar & Boué's paper). Cf. A002463. - Ruperto Corso, Dec 08 2011


A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 362.

G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


Table of n, a(n) for n=0..20.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 776.

J. Laskar and G. Boué, Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations, arXiv:1008.2947 [astro-ph.IM], 2010; A&A 522, A60 (November 2010).


This is binomial(2*n,n)^2/2^(4*n) multiplied by some power of 2, but the exact power of 2 needed is a bit hard to describe precisely. No doubt Prévost or Fletcher et al., where I saw this sequence 40 years ago, will have the answer. - N. J. A. Sloane, Jun 01 2013


f:=(n, q)->binomial(2*(n-q), (n-q))*binomial(2*q, q)/(4^n): seq(f(2*m, m)*lcm(seq(denom(2*f(2*m, i)), i=0..m-1), denom(f(2*m, m))), m=0..25); # Ruperto Corso, Dec 08 2011


f[n_, q_] := Binomial[2(n-q), n-q] Binomial[2q, q]/4^n;

a[m_] := f[2m, m] LCM @@ Append[Table[Denominator[2f[2m, i]], {i, 0, m-1}], Denominator[f[2m, m]]];

Table[a[m], {m, 0, 25}] (* Jean-François Alcover, Jan 20 2019, after Ruperto Corso *)


Sequence in context: A188210 A308646 A221246 * A210061 A034814 A034816

Adjacent sequences:  A002459 A002460 A002461 * A002463 A002464 A002465




N. J. A. Sloane


Sequence extended by Ruperto Corso, Dec 08 2011



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 04:58 EDT 2020. Contains 333155 sequences. (Running on oeis4.)