|
|
A089222
|
|
Number of ways of seating n people around a table for the second time without anyone sitting next to the same person as they did the first time.
|
|
8
|
|
|
1, 0, 0, 0, 0, 10, 36, 322, 2832, 27954, 299260, 3474482, 43546872, 586722162, 8463487844, 130214368530, 2129319003680, 36889393903794, 675098760648204, 13015877566642418, 263726707757115400, 5603148830577775218, 124568968969991162100, 2892414672938546871250
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
A078603 counts these arrangements up to circular symmetry (i.e., two arrangements are the same if one can be rotated to give the other). A002816 counts them up to dihedral symmetry (i.e., two arrangements are the same if one can be rotated or reflected to give the other). - Joel B. Lewis, Jan 28 2010
|
|
REFERENCES
|
J. Snell, Introduction to Probability, e-book, pp. 101 Q. 20.
|
|
LINKS
|
B. Aspvall and F. M. Liang, The dinner table problem, Technical Report CS-TR-80-829, Computer Science Department, Stanford, California, 1980.
|
|
FORMULA
|
Inclusion-exclusion gives that for n > 2, we have a(n) = n! + 2*n*(-1)^n + Sum_{1 <= k <= m < n} (-1)^m * (n/k) * binomial(n-m-1, k-1) * binomial(m-1, k-1) * 2^k * n * (n-m-1)!. - Joel B. Lewis, Jan 28 2010
a(n) = (3*n-30)*a(n-11) + (6*n-45)*a(n-10) + (5*n+18)*a(n-9) - (8*n-139)*a(n-8) - (26*n-204)*a(n-7) - (4*n-30)*a(n-6) + (26*n-148)*a(n-5) + (8*n-74)*a(n-4) - (9*n-18)*a(n-3) - (2*n-15)*a(n-2) + (n+2)*a(n-1), n >= 14. - Vaclav Kotesovec, Apr 13 2010
The asymptotic expansion from article by Aspvall and Liang (also cited in article by Tauraso) is wrong. Bad terms are 736/(15n^5) + 8428/(45n^6) + 40174/(63n^7)). Right asymptotic formula is a(n) ~ (n!/e^2)*(1 - 4/n + 20/(3n^3) + 58/(3n^4) + 796/(15n^5) + 7858/(45n^6) + 40324/(63n^7) + 140194/(63n^8) + ...). Verified also numerically. For example, for n=200, exact/asymptotic results are 1.0000000000125542243 (Aspvall + Liang), 1.0000000000000008990 (Kotesovec 7 terms) or 1.0000000000000000121 (Kotesovec 8 terms). - Vaclav Kotesovec, Apr 06 2012
|
|
EXAMPLE
|
a(4)=0 because trying to arrange 1,2,3,4 around a table will always give a couple who is sitting next to each other and differ by 1.
|
|
MATHEMATICA
|
Same[cperm_, n_] := ( For[same = False; i = 2, (i <= n) && ! same, i++, same = ((Mod[cperm[[i - 1]], n] + 1) == cperm[[i]]) || ((Mod[cperm[[ i]], n] + 1) == cperm[[i - 1]])]; same = same || ((Mod[cperm[[n]], n] + 1) == cperm[[1]]) || ((Mod[ cperm[[1]], n] + 1) == cperm[[n]]); Return[same]); CntSame[n_] := (allPerms = Permutations[Range[n]]; count = 0; For[j = 1, j <= n!, j++, perm = allPerms[[j]]; If[ ! Same[perm, n], count++ ]]; Return[count]);
(* or direct computation of terms *)
Table[If[n<3, 0, n! + (-1)^n*2n + Sum[(-1)^r*(n/(n-r))^2 * (n-r)! * Sum[2^c * Binomial[r-1, c-1] * Binomial[n-r, c], {c, 1, r}], {r, 1, n-1}]], {n, 1, 25}] (* Vaclav Kotesovec, Apr 06 2012 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
Udi Hadad (somebody(AT)netvision.net.il), Dec 22 2003
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|