login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220199
Number of nX3 arrays of the minimum value of corresponding elements and their horizontal, vertical or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 nX3 array
1
10, 36, 238, 1013, 3916, 15067, 58288, 218422, 773169, 2583728, 8224585, 25167752, 74507806, 214204816, 599356409, 1634563737, 4349942989, 11308092511, 28744810615, 71518831786, 174334969663, 416723727408, 977666680868
OFFSET
1,1
COMMENTS
Column 3 of A220204
LINKS
FORMULA
Empirical: a(n) = (1/552610124608731372158976000000)*n^29 - (1/38111043076464232562688000000)*n^28 - (43/10888869450418352160768000000)*n^27 + (1013/1209874383379816906752000000)*n^26 - (37/969450627708186624000000)*n^25 + (59/846066002363508326400000)*n^24 + (54830099/390882493091940846796800000)*n^23 - (7939573/894467947578812006400000)*n^22 + (5134253/22071287018178478080000)*n^21 + (37966001/9196369590907699200000)*n^20 - (152257814897/269760174666625843200000)*n^19 + (918505603831/42593711789467238400000)*n^18 - (962278931784007/2907020829631139020800000)*n^17 - (1930456964404139/342002450544839884800000)*n^16 + (43256823284606443/97714985869954252800000)*n^15 - (33779034291676489/2961060177877401600000)*n^14 + (990119936607349039/7098951964911206400000)*n^13 + (8261472616915478693/21296855894733619200000)*n^12 - (14609050016004250375909/289685642113592524800000)*n^11 + (606095725965810479424827/579371284227185049600000)*n^10 - (6894383399300066098456333/569025368437413888000000)*n^9 + (3094992352284156140975351/42150027291660288000000)*n^8 + (7175705615099463540165439/60590664231761664000000)*n^7 - (204006830067393368414683721/26929184103005184000000)*n^6 + (51776746394532001962514261613/612638938343367936000000)*n^5 - (1063830518327474508898879/1954191190887936000)*n^4 + (31834015971911914244845247/14586641389127808000)*n^3 - (480939292908953611199/96472495959840)*n^2 + (10194642893164011521/2329089562800)*n + 2343378 for n>10
EXAMPLE
Some solutions for n=3
..3..0..0....1..1..1....2..1..1....1..0..0....2..2..2....0..0..0....1..1..1
..3..1..0....1..1..1....2..1..1....3..1..0....2..0..0....2..0..0....2..1..1
..3..3..1....3..2..1....3..1..1....3..1..1....3..0..0....3..1..1....3..3..3
CROSSREFS
Sequence in context: A282554 A240151 A264486 * A089222 A139242 A139236
KEYWORD
nonn
AUTHOR
R. H. Hardin Dec 07 2012
STATUS
approved