|
|
A071951
|
|
Triangle of Legendre-Stirling numbers of the second kind T(n,j), n >= 1, 1 <= j <= n, read by rows.
|
|
22
|
|
|
1, 2, 1, 4, 8, 1, 8, 52, 20, 1, 16, 320, 292, 40, 1, 32, 1936, 3824, 1092, 70, 1, 64, 11648, 47824, 25664, 3192, 112, 1, 128, 69952, 585536, 561104, 121424, 7896, 168, 1, 256, 419840, 7096384, 11807616, 4203824, 453056, 17304, 240, 1, 512, 2519296, 85576448, 243248704, 137922336, 23232176, 1422080, 34584, 330, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. E. Andrews, W. Gawronski and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.
|
|
FORMULA
|
T(n, j) = Sum_{r=1..j} (-1)^(r+j)*(2*r+1)*(r^2+r)^n/((r+j+1)!*(j-r)!).
G.f. for j-th column (without leading zeros): 1/Product_{r=1..j} (1 - r*(r+1)*x), j >= 1. From eq.(4.5) of the Everitt et al. paper.
|
|
EXAMPLE
|
The triangle begins:
n\j 1 2 3 4 5 6 7 8 9 ...
1: 1
2: 2 1
3: 4 8 1
4: 8 52 20 1
5: 16 320 292 40 1
6: 32 1936 3824 1092 70 1
7: 64 11648 47824 25664 3192 112 1
8: 128 69952 585536 561104 121424 7896 168 1
9: 256 419840 7096384 11807616 4203824 453056 17304 240 1
...
Row 10: 512 2519296 85576448 243248704 137922336 23232176 1422080 34584 330 1. Reformatted by Wolfdieter Lang, Apr 10 2013
|
|
MAPLE
|
N:= 20: # to get the first N rows, flattened
for j from 1 to N do S[j]:= series(x^j/mul(1-r*(r+1)*x, r=1..j), x, N+1) od:
seq(seq(coeff(S[j], x, i), j=1..i), i=1..N); # Robert Israel, Dec 03 2015
# alternative
option remember;
if k =0 then
if n = 0 then
1;
else
0;
end if;
elif n = 0 then
if k =0 then
1;
else
0;
end if;
else
procname(n-1, k-1)+k*(k+1)*procname(n-1, k) ;
end if;
|
|
MATHEMATICA
|
Flatten[ Table[ Sum[(-1)^{r + j}(2r + 1)(r^2 + r)^n/((r + j + 1)!(j - r)!), {r, j}], {n, 10}, {j, n}]]
|
|
PROG
|
(PARI) {T(n, k) = sum( i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! )} /* Michael Somos, Feb 25 2012 */
(Magma) [[(&+[(-1)^(r+j)*(2*r+1)*(r^2+r)^n/(Factorial(r+j+1)*Factorial(j-r)): r in [1..j]]): j in [1..n]]: n in [1..12]]; // G. C. Greubel, Mar 16 2019
(Sage) [[sum( (-1)^(r+j)*(2*r+1)*(r^2+r)^n/(factorial(r+j+1)*factorial(j-r)) for r in (1..j)) for j in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 16 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|