login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135921 O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*(k+1)*x). 3
1, 1, 3, 13, 81, 669, 6955, 88505, 1346209, 23998521, 493956467, 11596542533, 307301505073, 9110471500693, 299893197116059, 10888674034993905, 433549376981078593, 18833037527449398129, 888439543634687700579 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..18.

FORMULA

a(n+1) = row sums of A071951. - Michael Somos, Feb 25 2012

G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-(k+1)*(k+2)*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013

EXAMPLE

O.g.f.: A(x) = 1 + x/(1-2x) + x^2/((1-2x)*(1-6x)) + x^3/((1-2x)*(1-6x)*(1-12x)) + x^4/((1-2x)*(1-6x)*(1-12x)*(1-20x)) + ...

Also generated by iterated binomial transforms in the following way:

[1,3,13,81,669,6955,88505,...] = BINOMIAL^2([1,1,5,31,253,2673,34833,..]);

[1,5,31,253,2673,34833,541879,...] = BINOMIAL^4([1,1,7,57,577,7389,...]);

[1,7,57,577,7389,115983,2151493,...] = BINOMIAL^6([1,1,9,91,1101,16497,...]);

[1,9,91,1101,16497,301669,..] = BINOMIAL^8([1,1,11,133,1873,32061,..]);

[1,11,133,1873,32061,666579,...] = BINOMIAL^10([1,1,13,183,2941,56529,...]);

etc.

PROG

(PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-j*(j+1)*x+x*O(x^n))), n)

(PARI) {a(n) = sum( k=0, n, sum( i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! ))} /* Michael Somos, Feb 25 2012 */

CROSSREFS

Cf. A071951, A135920, A124373.

Sequence in context: A020014 A184972 A160882 * A005923 A335588 A089461

Adjacent sequences:  A135918 A135919 A135920 * A135922 A135923 A135924

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 05:56 EST 2021. Contains 349470 sequences. (Running on oeis4.)