The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184972 Expansion of e.g.f. 1/( cos(arctanh(x)) - sin(arctanh(x)) ). 0
 1, 1, 3, 13, 81, 605, 5595, 59225, 725985, 9928505, 151720275, 2541096325, 46541735025, 922017392725, 19691502952875, 450278539452625, 10987846186994625, 284800630720672625, 7817729823142243875, 226487095510937568125, 6907505385375525620625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare e.g.f. to 1/(cosh(arctanh(x)) - sinh(arctanh(x))) = sqrt((1+x)/(1-x)). LINKS FORMULA a(n) ~ n!*2*sqrt(2)*exp(Pi/2)/(exp(Pi)-1) * ((exp(Pi/2)+1)/(exp(Pi/2)-1))^n. - Vaclav Kotesovec, Oct 18 2013 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 81*x^4/4! + 605*x^5/5! + ... where 1/A(tanh(x)) = cos(x) + sin(x). MAPLE a:=series(1/(cos(arctanh(x))-sin(arctanh(x))), x=0, 21): seq(n!*coeff(a, x, n), n=0..20); # Paolo P. Lava, Mar 28 2019 MATHEMATICA CoefficientList[Series[1/(Sqrt[2]*Sin[Pi/4 + 1/2*Log[(1-x)/(1+x)]]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 18 2013 *) PROG (PARI) {a(n)=n!*polcoeff(1/(cos(atanh(x+x*O(x^n)))-sin(atanh(x+x*O(x^n)))), n)} CROSSREFS Sequence in context: A331643 A074514 A020014 * A160882 A135921 A005923 Adjacent sequences:  A184969 A184970 A184971 * A184973 A184974 A184975 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 22:42 EST 2021. Contains 349526 sequences. (Running on oeis4.)