login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184972
Expansion of e.g.f. 1/( cos(arctanh(x)) - sin(arctanh(x)) ).
0
1, 1, 3, 13, 81, 605, 5595, 59225, 725985, 9928505, 151720275, 2541096325, 46541735025, 922017392725, 19691502952875, 450278539452625, 10987846186994625, 284800630720672625, 7817729823142243875, 226487095510937568125, 6907505385375525620625
OFFSET
0,3
COMMENTS
Compare e.g.f. to 1/(cosh(arctanh(x)) - sinh(arctanh(x))) = sqrt((1+x)/(1-x)).
FORMULA
a(n) ~ n!*2*sqrt(2)*exp(Pi/2)/(exp(Pi)-1) * ((exp(Pi/2)+1)/(exp(Pi/2)-1))^n. - Vaclav Kotesovec, Oct 18 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 81*x^4/4! + 605*x^5/5! + ...
where 1/A(tanh(x)) = cos(x) + sin(x).
MATHEMATICA
CoefficientList[Series[1/(Sqrt[2]*Sin[Pi/4 + 1/2*Log[(1-x)/(1+x)]]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 18 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/(cos(atanh(x+x*O(x^n)))-sin(atanh(x+x*O(x^n)))), n)}
CROSSREFS
Sequence in context: A331643 A074514 A020014 * A160882 A135921 A005923
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 22 2011
STATUS
approved