The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184970 Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth exactly g. 7
 1, 5, 1547, 21609300, 1, 733351105933, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 COMMENTS The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2. The row length is incremented to g-2 when 2n reaches A054760(7,g). LINKS Jason Kimberley, Incomplete table of i, n, g, C(n,g)=a(i) for row n = 4..11 EXAMPLE 1; 5; 1547; 21609300, 1; 733351105933, 1; ?, 8; ?, 741; ?, 2887493; CROSSREFS Connected 7-regular simple graphs with girth at least g: A184971 (triangle); chosen g: A014377 (g=3), A181153 (g=4). Connected 7-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184973 (g=3), A184974 (g=4)). Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), this sequence (k=7), A184980 (k=8). Sequence in context: A169620 A181992 A145694 * A184973 A184971 A014377 Adjacent sequences:  A184967 A184968 A184969 * A184971 A184972 A184973 KEYWORD nonn,hard,more,tabf AUTHOR Jason Kimberley, Feb 25 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 09:39 EST 2022. Contains 350476 sequences. (Running on oeis4.)