login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089274
Fifth column of the Legendre-Stirling triangle A071951.
3
1, 70, 3192, 121424, 4203824, 137922336, 4380918784, 136378114048, 4191383868672, 127754693361152, 3873052857829376, 117001609550671872, 3526270158211870720, 106112798944292282368, 3189880933574260359168
OFFSET
0,2
COMMENTS
This is the fifth member of the family A000079 (powers of 2), A016129, A016309, A071952, etc.
LINKS
Index entries for linear recurrences with constant coefficients, signature (70,-1708,17544,-72000,86400).
FORMULA
G.f.: 1/((1-2*1*x)*(1-3*2*x)*(1-4*3*x)*(1-5*4*x)*(1-6*5*x)).
a(n) = (16875*(6*5)^n -20000*(5*4)^n +6048*(4*3)^n -405*(3*2)^n +2*(2*1)^n)/2520.
a(n) = A071951(n+5, 5), n>=0.
a(n) = det(|ps(i+5,j+4)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). [Mircea Merca, Apr 06 2013]
E.g.f.: (1/2520)*(2*exp(2*x) - 405*exp(6*x) + 6048*exp(12*x) - 20000*exp(20*x) + 16875*exp(30*x)). - G. C. Greubel, Nov 10 2024
MATHEMATICA
Table[2^(n-3)*(5*(15)^(n+3) -2*(10)^(n+4) +28*6^(n+3) -5*3^(n+4) +2)/315, {n, 0, 30}] (* G. C. Greubel, Nov 10 2024 *)
PROG
(Magma) [(16875*(6*5)^n - 20000*(5*4)^n + 6048*(4*3)^n - 405*(3*2)^n + 2*(2*1)^n)/2520: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
(SageMath)
def A089274(n): return 2^n*(5*(15)^(n+3) -2*(10)^(n+4) +28*6^(n+3) -5*3^(n+4) +2)//2520
[A089274(n) for n in range(31)] # G. C. Greubel, Nov 10 2024
CROSSREFS
Cf. A000079 (powers of 2).
Sequence in context: A069296 A349466 A075923 * A266739 A227273 A298463
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 07 2003
STATUS
approved