login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089273
Fifth column (k=6) of array A078739(n,k) ((2,2)-generalized Stirling2).
2
1, 188, 12052, 540080, 20447056, 706827968, 23178048832, 736079932160, 22912552596736, 704164858293248, 21462936995648512, 650674662791229440, 19656291799888777216, 592413643343696150528, 17826953303927872110592
OFFSET
0,2
COMMENTS
The numerator of the g.f. is the m=3 row polynomial of the triangle A089275.
REFERENCES
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003), 198-205.
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Index entries for linear recurrences with constant coefficients, signature (70, -1708, 17544, -72000, 86400).
FORMULA
G.f.: (1+118*x+ 600*x^2)/Product_{p=1..5} (1-(p+1)*p*x).
a(n) = (2^n - 36*6^n + 36*6*12^n - 400*20^n + 75*3*30^n)/6 = d(n) + 118*d(n-1) + 600*d(n-2), n>=2, with d(n) := A089274(n)= A071951(n+5, 5)= (16875*30^n - 20000*20^n + 6048*12^n - 405*6^n + 2*2^n)/2520.
MAPLE
a:= n-> (Matrix([[12052, 188, 1, 0, 0]]). Matrix(5, (i, j)-> if (i=j-1) then 1 elif j=1 then [70, -1708, 17544, -72000, 86400][i] else 0 fi)^n)[1, 3]: seq(a(n), n=0..30); # Alois P. Heinz, Aug 14 2008
MATHEMATICA
LinearRecurrence[{70, -1708, 17544, -72000, 86400}, {1, 188, 12052, 540080, 20447056}, 15] (* Jean-François Alcover, Feb 28 2020 *)
CROSSREFS
Cf. A089272, A071951 (Legendre-Stirling triangle).
Sequence in context: A185241 A211818 A204071 * A035832 A065612 A088264
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 07 2003
STATUS
approved