Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 25 2024 17:34:41
%S 1,188,12052,540080,20447056,706827968,23178048832,736079932160,
%T 22912552596736,704164858293248,21462936995648512,650674662791229440,
%U 19656291799888777216,592413643343696150528,17826953303927872110592
%N Fifth column (k=6) of array A078739(n,k) ((2,2)-generalized Stirling2).
%C The numerator of the g.f. is the m=3 row polynomial of the triangle A089275.
%D P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003), 198-205.
%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="https://arxiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (70, -1708, 17544, -72000, 86400).
%F G.f.: (1+118*x+ 600*x^2)/Product_{p=1..5} (1-(p+1)*p*x).
%F a(n) = (2^n - 36*6^n + 36*6*12^n - 400*20^n + 75*3*30^n)/6 = d(n) + 118*d(n-1) + 600*d(n-2), n>=2, with d(n) := A089274(n)= A071951(n+5, 5)= (16875*30^n - 20000*20^n + 6048*12^n - 405*6^n + 2*2^n)/2520.
%p a:= n-> (Matrix([[12052,188,1,0,0]]). Matrix(5, (i,j)-> if (i=j-1) then 1 elif j=1 then [70,-1708,17544, -72000,86400][i] else 0 fi)^n)[1,3]: seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 14 2008
%t LinearRecurrence[{70, -1708, 17544, -72000, 86400}, {1, 188, 12052, 540080, 20447056}, 15] (* _Jean-François Alcover_, Feb 28 2020 *)
%Y Cf. A089272, A071951 (Legendre-Stirling triangle).
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Nov 07 2003