The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089275 Coefficient triangle of polynomials used for numerator of g.f.s for column sequences of array A078739. 6
 1, 1, 18, 1, 118, 600, 1, 412, 11772, 35280, 1, 1060, 97308, 1494576, 3265920, 1, 2270, 508708, 23753736, 249815520, 439084800, 1, 4298, 1989148, 218417400, 6710001408, 54187574400, 80951270400, 1, 7448, 6355048, 1402502400 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The polynomials are pe(n,x) := sum(a(n,m)*x^m,m=0..n-1). Companion polynomials are po(n,x) := sum(b(n,m)*x^m,m=0..n-1) with b(n,m) := A089276(n,m). LINKS Wolfdieter Lang, First 7 rows, also for A089276 FORMULA Combined recursion for polynomials pe(n, x) and po(n, x) defined above: pe(n, x)= 4*(2*n-1)*n*(n-1)*x*po(n-1, x) + (1-(2*n-1)*(2*n-2)*x)*pe(n-1, x) and po(n, x) = 2*(pe(n, x) + ((n-1)/2)*(1-2*n*(2*n-1)*x)*po(n-1, x))/(n+1), n >= 2,  with po(1, x) = 1 = pe(1,x). (Corrected Wolfdieter Lang, Apr 11 2013) Rewritten recursion for polynomial po: po(n, x) = (2*(1 - 2*(2*n-1)*(n-1)*x)*pe(n-1, x) + (n-1)*(1 + 6*n*(2*n-1)*x)* po(n-1, x))/(n+1), with pe(n,x) from above. - Wolfdieter Lang, Apr 11 2013 Combined recursion with b(n, m) := A089276(n, m): a(n, m) = a(n-1, m) - 2*(2*n-1)*(n-1)*a(n-1, m-1) + 4*n*(2*n-1)*(n-1)*b(n-1, m-1) and b(n, m) = (-2*n*(2*n-1)*(n-1)*b(n-1, m-1) + (n-1)*b(n-1, m) + 2*a(n, m))/(n+1), with n >= m+1 >= 2 and a(1, 0)= 1 = b(1, 0), else 0. Rewritten recursion for triangle b: b(n, m) = (6*n*(2*n-1)*(n-1)*b(n-1, m-1) + (n-1)*b(n-1, m) + 2*a(n-1, m) - 4*(2*n-1)*(n-1)*a(n-1, m-1))/(n+1), with a(n, m) from above. - Wolfdieter Lang, Apr 11 2013 CROSSREFS Cf. A078739, A089276. Sequence in context: A040340 A040341 A111872 * A182052 A223520 A242567 Adjacent sequences:  A089272 A089273 A089274 * A089276 A089277 A089278 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Nov 07 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 06:07 EDT 2021. Contains 344981 sequences. (Running on oeis4.)