OFFSET
0,2
FORMULA
G.f.: 1/product(1- p*(p+1)*x, p=1..6).
a(n)= A071951(n+6, 6), n>=0.
a(n)= sum(A089278(6, p)*(p*(p+1))^n, p=1..6)/A089500(6)= (-11*2^n + 7425*6^n - 266112*12^n + 2000000*20^n - 4640625*30^n + 3176523*42^n)/277200.
a(n) = det(|ps(i+6,j+5)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). [Mircea Merca, Apr 06 2013]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 07 2003
STATUS
approved