login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071949
Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.
5
1, 1, 2, 1, 4, 10, 1, 6, 24, 66, 1, 8, 42, 172, 498, 1, 10, 64, 326, 1360, 4066, 1, 12, 90, 536, 2706, 11444, 34970, 1, 14, 120, 810, 4672, 23526, 100520, 312066, 1, 16, 154, 1156, 7410, 42024, 211546, 911068, 2862562, 1, 18, 192, 1582, 11088, 69002, 387456, 1951494, 8457504, 26824386
OFFSET
0,3
LINKS
D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
FORMULA
T(n, k) = (n-k+1)*(Sum_{j=0..k-1} (2^(j+1)*binomial(k, j+1)*binomial(n+k, j)))/k for 0<k<=n; T(n, 0)=1; T(n, k)=0 for k>n.
T(n,0) = 1, T(n,n) = T(n,n-1) + T(n+1,n-1), otherwise T(n,k) = T(n,k-1) + T(n+1,k-1) + T(n-1,k). [Gerald McGarvey, Oct 09 2008]
EXAMPLE
Triangle begins:
1;
1, 2;
1, 4, 10;
1, 6, 24, 66;
1, 8, 42, 172, 498;
...
MAPLE
T := proc(n, k) if k>0 and k<=n then (n-k+1)*sum(2^(j+1)*binomial(k, j+1)*binomial(n+k, j), j=0..k-1)/k elif k=0 then 1 else 0 fi end: seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
T[_, 0] = 1;
T[n_, n_] := T[n, n] = T[n, n-1] + T[n+1, n-1];
T[n_, k_] /; 0 <= k < n := T[n, k] = T[n, k-1] + T[n+1, k-1] + T[n-1, k];
T[_, _] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 15 2019 *)
CROSSREFS
T(n, n)=A027307(n).
Sequence in context: A279927 A137634 A100229 * A297506 A297720 A297654
KEYWORD
nonn,easy,tabl
AUTHOR
N. J. A. Sloane, Jun 15 2002
EXTENSIONS
Edited by Emeric Deutsch, Mar 04 2004
STATUS
approved