login
A279927
Expansion of e.g.f. arctan(x)*exp(x).
4
0, 1, 2, 1, -4, 9, 110, -279, -4520, 17265, 322618, -1638031, -35226860, 223578809, 5463436134, -41639195623, -1142009233872, 10162622387809, 309463272791538, -3149754003442847, -105510576441518164, 1208991988527548137, 44200537412519181278, -563099647603189449783
OFFSET
0,3
LINKS
FORMULA
From Emanuele Munarini, Dec 16 2017: (Start)
a(n) = Sum_{k=0..n/2} binomial(n+1,2*k+1)*(-1)^k*((n-2*k)/(n+1))*(2k)!.
a(n+3) - a(n+2) + (n+1)*(n+2)*a(n+1) - (n+1)*(n+2)*a(n) = 1.
a(n+4) - 2*a(n+3) + (n^2+5*n+7)*a(n+2) - 2*(n+2)^2*a(n+1) + (n+1)*(n+2)*a(n) = 0. (End)
a(n) ~ (n-1)! * sin(Pi*n/2-1). - Vaclav Kotesovec, Dec 17 2017
EXAMPLE
atan(x)*exp(x) = x + 2*x^2/2! + x^3/3! - 4*x^4/4! + 9*x^5/5! + ...
MATHEMATICA
CoefficientList[Series[Exp[x] ArcTan[x], {x, 0, 12}], x] Range[0, 12]!
Table[Sum[Binomial[n+1, 2k+1] (-1)^k (n-2k)/(n+1) (2k)!, {k, 0, n/2}], {n, 0, 12}] (* Emanuele Munarini, Dec 16 2017 *)
PROG
(PARI) x='x+O('x^33); concat([0], Vec(serlaplace(atan(x)*exp(x) ) ) ) \\ Joerg Arndt, Jan 06 2017
(Maxima) makelist(sum((-1)^k*binomial(n+1, 2*k+1)*(n-2*k)/(n+1)*(2*k)!, k, 0, floor(n/2)), n, 0, 12); /* Emanuele Munarini, Dec 16 2017 */
CROSSREFS
E.g.f. of exp(x) A000012, -arctan(x) A186246.
Sequence in context: A268572 A343909 A117338 * A137634 A100229 A071949
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jan 06 2017
STATUS
approved