login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186246
(2n+1)-th derivative of arccot(x) at x=0.
2
-1, 2, -24, 720, -40320, 3628800, -479001600, 87178291200, -20922789888000, 6402373705728000, -2432902008176640000, 1124000727777607680000, -620448401733239439360000, 403291461126605635584000000, -304888344611713860501504000000, 265252859812191058636308480000000
OFFSET
0,2
COMMENTS
Also the negated (2n+1)-th derivative of arctan(x) at x=0. - Stanislav Sykora, Jan 06 2017
LINKS
FORMULA
a(n) = (-1)^(n+1)*A010050(n). - M. F. Hasler, Apr 22 2015
MAPLE
a:= n-> (2*n+1)! * coeftayl(arccot(x), x=0, 2*n+1):
seq (a(n), n=0..20); # Alois P. Heinz, Aug 18 2012
MATHEMATICA
f[x_] := ArcCot[x]; Table[Derivative[2*n+1][f][0], {n, 0, 17}]
Table[(-1)^(n + 1)*(2*n)!, {n, 0, 50}] (* G. C. Greubel, Aug 10 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, -(-1)^n * (2*n)!)}; /* Michael Somos, Jan 07 2017 */
(Magma) [(-1)^(n+1)*Factorial(2*n): n in [0..50]]; // G. C. Greubel, Aug 10 2018
CROSSREFS
Cf. A010050.
Sequence in context: A279236 A279309 A010050 * A012161 A009724 A177771
KEYWORD
sign
AUTHOR
Michel Lagneau, Aug 18 2012
STATUS
approved