login
A186246
(2n+1)-th derivative of arccot(x) at x=0.
2
-1, 2, -24, 720, -40320, 3628800, -479001600, 87178291200, -20922789888000, 6402373705728000, -2432902008176640000, 1124000727777607680000, -620448401733239439360000, 403291461126605635584000000, -304888344611713860501504000000, 265252859812191058636308480000000
OFFSET
0,2
COMMENTS
Also the negated (2n+1)-th derivative of arctan(x) at x=0. - Stanislav Sykora, Jan 06 2017
LINKS
FORMULA
a(n) = (-1)^(n+1)*A010050(n). - M. F. Hasler, Apr 22 2015
MAPLE
a:= n-> (2*n+1)! * coeftayl(arccot(x), x=0, 2*n+1):
seq (a(n), n=0..20); # Alois P. Heinz, Aug 18 2012
MATHEMATICA
f[x_] := ArcCot[x]; Table[Derivative[2*n+1][f][0], {n, 0, 17}]
Table[(-1)^(n + 1)*(2*n)!, {n, 0, 50}] (* G. C. Greubel, Aug 10 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, -(-1)^n * (2*n)!)}; /* Michael Somos, Jan 07 2017 */
(Magma) [(-1)^(n+1)*Factorial(2*n): n in [0..50]]; // G. C. Greubel, Aug 10 2018
CROSSREFS
Cf. A010050.
Sequence in context: A279236 A279309 A010050 * A012161 A009724 A177771
KEYWORD
sign
AUTHOR
Michel Lagneau, Aug 18 2012
STATUS
approved