login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(2n+1)-th derivative of arccot(x) at x=0.
2

%I #27 Sep 08 2022 08:45:55

%S -1,2,-24,720,-40320,3628800,-479001600,87178291200,-20922789888000,

%T 6402373705728000,-2432902008176640000,1124000727777607680000,

%U -620448401733239439360000,403291461126605635584000000,-304888344611713860501504000000,265252859812191058636308480000000

%N (2n+1)-th derivative of arccot(x) at x=0.

%C Also the negated (2n+1)-th derivative of arctan(x) at x=0. - _Stanislav Sykora_, Jan 06 2017

%H G. C. Greubel, <a href="/A186246/b186246.txt">Table of n, a(n) for n = 0..224</a>

%F a(n) = (-1)^(n+1)*A010050(n). - _M. F. Hasler_, Apr 22 2015

%p a:= n-> (2*n+1)! * coeftayl(arccot(x), x=0, 2*n+1):

%p seq (a(n), n=0..20); # _Alois P. Heinz_, Aug 18 2012

%t f[x_] := ArcCot[x]; Table[Derivative[2*n+1][f][0],{n,0,17}]

%t Table[(-1)^(n + 1)*(2*n)!, {n, 0, 50}] (* _G. C. Greubel_, Aug 10 2018 *)

%o (PARI) {a(n) = if( n<0, 0, -(-1)^n * (2*n)!)}; /* _Michael Somos_, Jan 07 2017 */

%o (Magma) [(-1)^(n+1)*Factorial(2*n): n in [0..50]]; // _G. C. Greubel_, Aug 10 2018

%Y Cf. A010050.

%K sign

%O 0,2

%A _Michel Lagneau_, Aug 18 2012