login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297720
T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1, 2 or 4 neighboring 1s.
13
1, 2, 1, 4, 10, 1, 7, 34, 29, 1, 12, 83, 145, 87, 1, 21, 258, 523, 747, 280, 1, 37, 865, 2717, 4212, 4090, 876, 1, 65, 2651, 14462, 36981, 34319, 21116, 2735, 1, 114, 8041, 68919, 336653, 512354, 268630, 110551, 8583, 1, 200, 25114, 332306, 2699832, 8103241
OFFSET
1,2
COMMENTS
Table starts
.1.....2.......4.........7..........12............21..............37
.1....10......34........83.........258...........865............2651
.1....29.....145.......523........2717.........14462...........68919
.1....87.....747......4212.......36981........336653.........2699832
.1...280....4090.....34319......512354.......8103241.......107787351
.1...876...21116....268630.....6812856.....183324631......4021047904
.1..2735..110551...2139403....91994155....4238895126....154327332017
.1..8583..582755..17031173..1242370107...98184350818...5920531350715
.1.26900.3055652.135252357.16741579726.2265008802005.226188909640209
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +2*a(n-2) +5*a(n-3) -a(n-5) -a(n-6)
k=3: [order 13]
k=4: [order 42]
k=5: [order 87]
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
n=2: a(n) = 4*a(n-1) -3*a(n-2) +3*a(n-3) -2*a(n-4) -24*a(n-5) +24*a(n-6)
n=3: [order 18]
n=4: [order 51]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1. .1..1..0..0. .1..0..1..0. .0..0..1..0. .0..0..1..1
..0..0..1..1. .0..1..0..0. .0..1..1..0. .0..0..0..1. .0..0..1..0
..0..1..0..0. .0..1..0..0. .1..1..0..0. .1..1..1..1. .1..0..0..0
..1..0..0..0. .1..1..0..0. .1..0..1..1. .0..1..0..0. .1..1..0..0
CROSSREFS
Column 2 is A295525.
Row 1 is A005251(n+2).
Sequence in context: A100229 A071949 A297506 * A297654 A220922 A220993
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 04 2018
STATUS
approved