Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jan 04 2018 21:59:14
%S 1,2,1,4,10,1,7,34,29,1,12,83,145,87,1,21,258,523,747,280,1,37,865,
%T 2717,4212,4090,876,1,65,2651,14462,36981,34319,21116,2735,1,114,8041,
%U 68919,336653,512354,268630,110551,8583,1,200,25114,332306,2699832,8103241
%N T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1, 2 or 4 neighboring 1s.
%C Table starts
%C .1.....2.......4.........7..........12............21..............37
%C .1....10......34........83.........258...........865............2651
%C .1....29.....145.......523........2717.........14462...........68919
%C .1....87.....747......4212.......36981........336653.........2699832
%C .1...280....4090.....34319......512354.......8103241.......107787351
%C .1...876...21116....268630.....6812856.....183324631......4021047904
%C .1..2735..110551...2139403....91994155....4238895126....154327332017
%C .1..8583..582755..17031173..1242370107...98184350818...5920531350715
%C .1.26900.3055652.135252357.16741579726.2265008802005.226188909640209
%H R. H. Hardin, <a href="/A297720/b297720.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = 2*a(n-1) +2*a(n-2) +5*a(n-3) -a(n-5) -a(n-6)
%F k=3: [order 13]
%F k=4: [order 42]
%F k=5: [order 87]
%F Empirical for row n:
%F n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
%F n=2: a(n) = 4*a(n-1) -3*a(n-2) +3*a(n-3) -2*a(n-4) -24*a(n-5) +24*a(n-6)
%F n=3: [order 18]
%F n=4: [order 51]
%e Some solutions for n=4 k=4
%e ..0..1..0..1. .1..1..0..0. .1..0..1..0. .0..0..1..0. .0..0..1..1
%e ..0..0..1..1. .0..1..0..0. .0..1..1..0. .0..0..0..1. .0..0..1..0
%e ..0..1..0..0. .0..1..0..0. .1..1..0..0. .1..1..1..1. .1..0..0..0
%e ..1..0..0..0. .1..1..0..0. .1..0..1..1. .0..1..0..0. .1..1..0..0
%Y Column 2 is A295525.
%Y Row 1 is A005251(n+2).
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Jan 04 2018