login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008270 Total length of strings on n symbols in Stockhausen problem. 1
1, 20, 507, 19552, 1113485, 88725876, 9452410135, 1299140690912, 223938108997497, 47323772172058420, 12033854264863090451, 3625294706255832787200, 1276951433895343148472517 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..13.

R. C. Read, Combinatorial problems in theory of music, Discrete Math. 167 (1997), 543-551.

Ronald C. Read, Lily Yen, A note on the Stockhausen problem, J. Comb. Theory, Ser. A 76, No. 1 (1996), 1-10.

FORMULA

a(n) = n * Sum_{k=0..n-1} binomial(n - 1, k) * (2*k+1) * (2*k+1)! / 2^k. - Sean A. Irvine, Mar 08 2018

CROSSREFS

Sequence in context: A270578 A255492 A092087 * A130186 A130033 A250016

Adjacent sequences:  A008267 A008268 A008269 * A008271 A008272 A008273

KEYWORD

nonn

AUTHOR

Lily Yen

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 22:12 EST 2022. Contains 350466 sequences. (Running on oeis4.)