|
|
A008273
|
|
Number of performances of n fragments in Stockhausen problem.
|
|
0
|
|
|
0, 2, 78, 2724, 125660, 8194710, 735861882, 87393619208, 13265357282424, 2504688304672170, 575664637463471270, 158222202489198948012, 51242608446214266856788, 19312113111031410277418174
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..14.
R. C. Read, Combinatorial problems in theory of music, Discrete Math. 167 (1997), 543-551.
Ronald C. Read, Lily Yen, A note on the Stockhausen problem, J. Comb. Theory, Ser. A 76, No. 1 (1996), 1-10.
|
|
FORMULA
|
a(n) = Sum_{k=1..n} binomial(n, k) * ((2*k)! / 2^k - k * k!). - Sean A. Irvine, Mar 08 2018
|
|
CROSSREFS
|
Sequence in context: A183578 A184965 A157062 * A231240 A197101 A245674
Adjacent sequences: A008270 A008271 A008272 * A008274 A008275 A008276
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Lily Yen
|
|
STATUS
|
approved
|
|
|
|