login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157062
Number of integer sequences of length n+1 with sum zero and sum of absolute values 26.
1
2, 78, 1692, 25740, 302850, 2912910, 23744840, 168278760, 1056789450, 5968878630, 30684132468, 144977296932, 634756203018, 2593322651430, 9946019437200, 35995371261360, 123490242018990, 403237594259010, 1257743358034100, 3759426449644740, 10799525727846702
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (27,-351,2925,-17550,80730,-296010,888030,-2220075, 4686825,-8436285,13037895,-17383860,20058300,-20058300,17383860,-13037895, 8436285,-4686825,2220075,-888030,296010,-80730,17550,-2925,351,-27,1).
FORMULA
a(n) = T(n,13); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+12, 13)*Hypergeometric3F2([-12, -n, 1-n], [2, -n-12], 1).
a(n) = (10400600/26!)*n*(n+1)*(2982752926433280000 + 6502800338141184000*n + 10192999816651161600*n^2 + 8194549559065989120*n^3 + 6217354001317404672*n^4 + 2785907939555600640*n^5 + 1345736958526293696*n^6 + 386128480881709632*n^7 + 133329525393692848*n^8 + 26155830342678960*n^9 + 6893260441243396*n^10 + 955286585044572*n^11 + 200534847420673*n^12 + 19880275030680*n^13 + 3426180791086*n^14 + 242021337492*n^15 + 35027635423*n^16 + 1724131200*n^17 + 213288856*n^18 + 6959172*n^19 + 746383*n^20 + 14520*n^21 + 1366*n^22 + 12*n^23 + n^24).
G.f.: 2*x*(1 + 12*x + 144*x^2 + 792*x^3 + 4356*x^4 + 14520*x^5 + 48400*x^6 + 108900*x^7 + 245025*x^8 + 392040*x^9 + 627264*x^10 + 731808*x^11 + 853776*x^12 + 731808*x^13 + 627264*x^14 + 392040*x^15 + 245025*x^16 + 108900*x^17 + 48400*x^18 + 14520*x^19 + 4356*x^20 + 792*x^21 + 144*x^22 + 12*x^23 + x^24)/(1-x)^27. (End)
MATHEMATICA
A103881[n_, k_]:= (n+1)*Binomial[n+k-1, k]*HypergeometricPFQ[{1-n, -n, 1-k}, {2, 1-n - k}, 1];
A157062[n_]:= A103881[n, 13];
Table[A157062[n], {n, 50}] (* G. C. Greubel, Jan 24 2022 *)
PROG
(Sage)
def A103881(n, k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) )
def A157062(n): return A103881(n, 13)
[A157062(n) for n in (1..50)] # G. C. Greubel, Jan 24 2022
CROSSREFS
Sequence in context: A308373 A183578 A184965 * A008273 A231240 A197101
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 22 2009
STATUS
approved