login
A157065
Number of integer sequences of length n+1 with sum zero and sum of absolute values 32.
1
2, 96, 2562, 47920, 692610, 8174544, 81659522, 708113304, 5431848930, 37403270520, 233931828834, 1341750437352, 7114703302434, 35117045235720, 162298598439330, 705951252118284, 2903050518427962, 11331495633292524, 42132555868774010, 149703679118108220
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (33,-528,5456,-40920,237336,-1107568,4272048, -13884156,38567100,-92561040,193536720,-354817320,573166440,-818809200, 1037158320,-1166803110,1166803110,-1037158320,818809200,-573166440,354817320, -193536720,92561040,-38567100,13884156,-4272048,1107568,-237336,40920,-5456, 528,-33,1).
FORMULA
a(n) = T(n,16); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+15, 16)*Hypergeometric3F2([-15, -n, 1-n], [2, -n-15], 1).
a(n) = (601080390/32!)*n*(n+1)*(27360196043587190784000000 + 65137211981397216460800000*n + 107110050449356033228800000*n^2 + 94817527804050105212928000*n^3 + 75961411427539608595660800*n^4 + 38202458280851158526730240*n^5 + 19587950887554046039781376*n^6 + 6463560689425876180435200*n^7 + 2379792991631228553219840*n^8 + 553304095999692103772160*n^9 + 156114125142340061791744*n^10 + 26624540206135314300000*n^11 + 6005394587432947709600*n^12 + 768878902291539639600*n^13 + 142854837644598236640*n^14 + 13893755540913698625*n^15 + 2174500936993696575*n^16 + 161097628663020825*n^17 + 21612664028370855*n^18 + 1212359721607125*n^19 + 141388292047275*n^20 + 5907926749725*n^21 + 605873224515*n^22 + 18281995875*n^23 + 1664663325*n^24 + 34287435*n^25 + 2794869*n^26 + 35175*n^27 + 2585*n^28 + 15*n^29 + n^30).
G.f.: 2*x*(1 + 15*x + 225*x^2 + 1575*x^3 + 11025*x^4 + 47775*x^5 + 207025*x^6 + 621075*x^7 + 1863225*x^8 + 4099095*x^9 + 9018009*x^10 + 15030015*x^11 + 25050025*x^12 + 32207175*x^13 + 41409225*x^14 + 41409225*x^15 + 41409225*x^16 + 32207175*x^17 + 25050025*x^18 + 15030015*x^19 + 9018009*x^20 + 4099095*x^21 + 1863225*x^22 + 621075*x^23 + 207025*x^24 + 47775*x^25 + 11025*x^26 + 1575*x^27 + 225*x^28 + 15*x^29 + x^30)/(1-x)^33. (End)
MATHEMATICA
A103881[n_, k_]:= (n+1)*Binomial[n+k-1, k]*HypergeometricPFQ[{1-n, -n, 1-k}, {2, 1-n - k}, 1];
A157065[n_]:= A103881[n, 16];
Table[A157065[n], {n, 50}] (* G. C. Greubel, Jan 25 2022 *)
PROG
(Sage)
def A103881(n, k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) )
def A157065(n): return A103881(n, 16)
[A157065(n) for n in (1..50)] # G. C. Greubel, Jan 25 2022
CROSSREFS
Sequence in context: A282436 A069121 A362406 * A123115 A119696 A264542
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 22 2009
STATUS
approved