login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008272 Total length of performances of n fragments in Stockhausen problem. 0
0, 10, 732, 47868, 3848320, 395925990, 51677715180, 8406604850392, 1673689684372128, 401132372917509090, 114061334769253037980, 37993391290097065722900, 14661377074205783294317152 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..13.

R. C. Read, Combinatorial problems in theory of music, Discrete Math. 167 (1997), 543-551.

Ronald C. Read, Lily Yen, A note on the Stockhausen problem, J. Comb. Theory, Ser. A 76, No. 1 (1996), 1-10.

FORMULA

a(n) = 3 * A008271(n) + n * (n-1) * Sum_{k=0..n-2} binomial(n - 2, k) * (2 * k + 1) * (2 * k + 1)! * (2*k^2+3*k+2) / 2^k [from Read and Yen]. - Sean A. Irvine, Mar 08 2018

CROSSREFS

Sequence in context: A006435 A108603 A053468 * A015509 A117257 A030979

Adjacent sequences:  A008269 A008270 A008271 * A008273 A008274 A008275

KEYWORD

nonn

AUTHOR

Lily Yen

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 22:51 EDT 2022. Contains 354073 sequences. (Running on oeis4.)