login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191935
Triangle read by rows of Legendre-Stirling numbers of the second kind.
2
1, 1, 2, 1, 8, 4, 1, 20, 52, 8, 1, 40, 292, 320, 16, 1, 70, 1092, 3824, 1936, 32, 1, 112, 3192, 25664, 47824, 11648, 64, 1, 168, 7896, 121424, 561104, 585536, 69952, 128, 1, 240, 17304, 453056, 4203824, 11807616, 7096384, 419840, 256, 1, 330, 34584, 1422080, 23232176, 137922336, 243248704, 85576448, 2519296, 512
OFFSET
1,3
LINKS
G. E. Andrews, W. Gawronski and L. L. Littlejohn, The Legendre-Stirling Numbers
G. E. Andrews et al., The Legendre-Stirling numbers, Discrete Math., 311 (2011), 1255-1272.
FORMULA
From G. C. Greubel, Jun 06 2021: (Start)
T(n, k) = Ps(n, n-k+1), where Ps(n, k) = Sum_{j=0..k} (-1)^(j+k)*(2*j+1)*j^n*(1 + j)^n/((j+k+1)!*(k-j)!).
Sum_{k=1..n} T(n, k) = A135921(n). (End)
EXAMPLE
Triangle begins:
1;
1 2;
1 8 4;
1 20 52 8;
1 40 292 320 16;
1 70 1092 3824 1936 32;
1 112 3192 25664 47824 11648 64;
1 168 7896 121424 561104 585536 69952 128;
...
MATHEMATICA
Ps[n_, k_]:= Sum[(-1)^(j+k)*(2*j+1)*j^n*(1+j)^n/((j+k+1)!*(k-j)!), {j, 0, k}];
Table[Ps[n, n-k+1], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
PROG
(PARI) T071951(n, k) = sum(i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! );
for (n=1, 10, for (k=1, n, print1(T071951(n, n-k+1), ", ")); print); \\ Michel Marcus, Nov 24 2019
(Sage)
def Ps(n, k): return sum( (-1)^(j+k)*(2*j+1)*j^n*(1+j)^n/(factorial(j+k+1) * factorial(k-j)) for j in (0..k) )
flatten([[Ps(n, n-k+1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jun 06 2021
CROSSREFS
Cf. A135921 (row sums), A191936.
Mirror of triangle A071951. - Omar E. Pol, Jan 10 2012
Sequence in context: A367994 A208931 A133214 * A156365 A142075 A366173
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 19 2011
EXTENSIONS
More terms from Omar E. Pol, Jan 10 2012
More terms from Michel Marcus, Nov 24 2019
STATUS
approved