login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191933
Numbers that are the concatenation of the decimal representation of two nonzero squares.
8
11, 14, 19, 41, 44, 49, 91, 94, 99, 116, 125, 136, 149, 161, 164, 169, 181, 251, 254, 259, 361, 364, 369, 416, 425, 436, 449, 464, 481, 491, 494, 499, 641, 644, 649, 811, 814, 819, 916, 925, 936, 949, 964, 981, 1001, 1004, 1009, 1100, 1121, 1144, 1169, 1196
OFFSET
1,1
COMMENTS
Complement of A193096; A193095(a(n)) > 0; A038670, A039686, A167535, A192993, A193097 and A193144 are subsequences. [Reinhard Zumkeller, Jul 17 2011]
LINKS
MATHEMATICA
Take[Union[Flatten[Table[FromDigits[Flatten[{IntegerDigits[m^2], IntegerDigits[n^2]}]], {m, 20}, {n, 20}]]], 50] (* Alonso del Arte, Aug 11 2011 *)
squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[ {b}]]}]; Select[Range[2000], okQ] (* Jean-François Alcover, Dec 13 2016 *)
PROG
(Magma) CheckSplits:=function(n); v:=false; S:=Intseq(n); for j in [1..#S-1] do A:=[ S[k]: k in [1..j] ]; a:=Seqint(A); B:=[ S[k]: k in [j+1..#S] ]; b:=Seqint(B); if a gt 0 and A[#A] gt 0 and IsSquare(a) and IsSquare(b) then v:=true; end if; end for; return v; end function; [ p: p in [1..1200] | CheckSplits(p) ];
(Haskell)
import Data.List (findIndices)
a191933 n = a191933_list !! (n-1)
a191933_list = findIndices (> 0) $ map a193095 [0..]
-- Reinhard Zumkeller, Jul 17 2011
CROSSREFS
Sequence in context: A163672 A216580 A114948 * A193097 A343855 A077675
KEYWORD
nonn,base,easy
AUTHOR
Klaus Brockhaus, Jun 19 2011
STATUS
approved