OFFSET
1,1
COMMENTS
The requirement that the second digit is not zero is so that both of the two squares have the same number of digits.
For k > 2, the number of k-digit terms is given by A344570(k-1).
All terms have last digit either 1, 4, 6, or 9. A term cannot have last digit 0 since that would mean one of the squares ends in an odd number of zeros and all squares end in an even number of zeros. A term cannot have last digit 5 since squares ending in 5 have 25 as last 2 digits and there are no squares having last digit 2. The last 2 digits of terms must be one of 01, 04, 09, 16, 41, 44, 49, 56, 61, 64, 69, 96. - Chai Wah Wu, May 27 2021
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..2348
EXAMPLE
14 is a term because both 1 and 4 are square numbers.
164 is a term because both 16 = 4^2 and 64 = 8^2 are square numbers.
1441 is a term because both 144 = 12^2 and 441 = 21^2 are square numbers.
MATHEMATICA
sQ[n_] := IntegerQ@Sqrt[n];
selQ[n_] := With[{dd = IntegerDigits[n]}, If[dd[[2]] == 0 || FreeQ[dd[[-1]], 1|4|6|9], False, sQ[FromDigits[Rest[dd]]] && sQ[FromDigits[Most[dd]]]]];
Select[Range[11, 10^6], selQ] (* Jean-François Alcover, May 29 2021 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Andrew Howroyd, May 26 2021
STATUS
approved