login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343854
Irregular triangle read by rows: the n-th row gives the column indices of the matrix of 1..n^2 filled successively back and forth along antidiagonals.
2
1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 3, 2, 3, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 4, 3, 4, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 3, 4, 5, 5, 4, 5, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 4, 5, 6, 6, 5, 6
OFFSET
1,3
EXAMPLE
The triangle begins:
1
1 2 1 2
1 2 1 1 2 3 3 2 3
1 2 1 1 2 3 4 3 2 1 2 3 4 4 3 4
...
MATHEMATICA
a={}; For[n=1, n<=6, n++, For[d=1, d<=n, d++, If[EvenQ[d], i=d; For [k=1, k<=d, k++, AppendTo[a, i-k+1]], i=1; For[k=1, k<=d, k++, AppendTo[a, i+k-1]]]]; For[d=n+1, d<=2n-1, d++, If[EvenQ[d], i= n; For[k=1, k<=2n-d, k++, AppendTo[a, i-k+1]], If[OddQ[d], i=d-n+1; For[k=1, k<=2n-d, k++, AppendTo[a, i+k-1]]]]]]; a
CROSSREFS
Cf. A000290 (row length), A002411 (row sums), A060747 (number of antidiagonals), A078475, A319572, A343853 (row indices).
Sequence in context: A104248 A358359 A249973 * A069349 A167404 A280223
KEYWORD
nonn,look,tabf
AUTHOR
Stefano Spezia, May 01 2021
STATUS
approved