The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193095 Number of times n can be written as concatenation of exactly two nonzero squares in decimal representation. 8
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,165 COMMENTS a(A193096(n))=0; a(A191933(n))>0; a(A193097(n))=1; a(A192993(n))>1; a(A038670(n))=2. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 EXAMPLE a(164) = 2, A191933(15) = A192993(1) = 164: 1'64 == 16'4. PROG (Haskell) a193095 n = sum \$ map c [1..(length \$ show n) - 1] where c k | head ys == '0' = 0 | otherwise = a010052 (read xs) * a010052 (read ys) where (xs, ys) = splitAt k \$ show n (PARI) A193095(n) = sum( t=1, #Str(n)-1, apply(issquare, divrem(n, 10^t))==[1, 1]~ && n%10^t>=10^(t-1)) \\ M. F. Hasler, Jul 24 2011 (PARI) A193095(n)={ my(c, p=1); while( n>p*=10, n%p*10>=p||next; issquare(n%p)||next; issquare(n\p) && c++); c} \\ M. F. Hasler, Jul 24 2011 CROSSREFS Cf. A010052. Sequence in context: A045701 A277156 A353798 * A011725 A346619 A037808 Adjacent sequences: A193092 A193093 A193094 * A193096 A193097 A193098 KEYWORD nonn,base AUTHOR Reinhard Zumkeller, Jul 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 03:32 EDT 2024. Contains 375059 sequences. (Running on oeis4.)