login
A193092
Augmentation of the triangular array P given by p(n,k)=k! for 0<=k<=n. See Comments.
2
1, 1, 1, 1, 2, 3, 1, 3, 7, 13, 1, 4, 12, 32, 69, 1, 5, 18, 58, 173, 421, 1, 6, 25, 92, 321, 1058, 2867, 1, 7, 33, 135, 523, 1977, 7159, 21477, 1, 8, 42, 188, 790, 3256, 13344, 53008, 175769, 1, 9, 52, 252, 1134, 4986, 21996, 97956, 427401, 1567273
OFFSET
0,5
COMMENTS
For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.
Regarding W=A193092, we have w(n,n)=A088368.
EXAMPLE
First 7 rows:
1
1...1
1...2....3
1...3....7.....13
1...4....12....32....69
1...5....18....58....173...421
1...6....25....92....321...1058...2867
The matrix method described at A193091 shows that row 3 arises from row 2 as the matrix product
............. (1...1...2...4)
(1...2...3) * (0...1...1...2) = (1...3...7...13)
............. (0...0...1...1).
The equivalent polynomial substitution method:
x^2+2x+3 -> (x^3+x^2+2x+4)+2(x^2+x+2)+3(x+1)= x^3+3x^2+7x+13.
MATHEMATICA
p[n_, k_] := k!
Table[p[n, k], {n, 0, 5}, {k, 0, n}]
m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
TableForm[m[4]]
w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
v[n_] := v[n - 1].m[n]
TableForm[Table[v[n], {n, 0, 6}]] (* A193092 *)
Flatten[Table[v[n], {n, 0, 8}]]
CROSSREFS
Sequence in context: A011117 A368401 A069269 * A263484 A293985 A100324
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 30 2011
STATUS
approved