login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193093
Augmentation of the triangular array P=A094727 given by p(n,k)=n+k+1 for 0<=k<=n. See Comments.
3
1, 2, 3, 6, 14, 19, 24, 72, 130, 169, 120, 432, 918, 1482, 1877, 720, 3000, 7224, 13140, 19846, 24675, 5040, 23760, 63600, 127104, 210726, 304006, 372611, 40320, 211680, 622080, 1350000, 2412408, 3754656, 5234114, 6340961, 362880, 2096640
OFFSET
0,2
COMMENTS
For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.
Regarding W=A193093, we have w(n,0)=(n+1)! .
EXAMPLE
First 5 rows:
1
2.....3
6.....14....19
24....72....130....169
120...432....918...1482...1877
MATHEMATICA
p[n_, k_] := n + k + 1
Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A094727 *)
m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
TableForm[m[4]]
w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
v[n_] := v[n - 1].m[n]
TableForm[Table[v[n], {n, 0, 6}]] (* A193093 *)
Flatten[Table[v[n], {n, 0, 8}]]
CROSSREFS
Cf. A094727.
Sequence in context: A005537 A306600 A282351 * A182756 A152092 A187033
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 30 2011
STATUS
approved