Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Dec 18 2023 04:02:29
%S 1,1,2,1,8,4,1,20,52,8,1,40,292,320,16,1,70,1092,3824,1936,32,1,112,
%T 3192,25664,47824,11648,64,1,168,7896,121424,561104,585536,69952,128,
%U 1,240,17304,453056,4203824,11807616,7096384,419840,256,1,330,34584,1422080,23232176,137922336,243248704,85576448,2519296,512
%N Triangle read by rows of Legendre-Stirling numbers of the second kind.
%H G. C. Greubel, <a href="/A191935/b191935.txt">Rows n = 1..50 of the triangle, flattened</a>
%H G. E. Andrews, W. Gawronski and L. L. Littlejohn, <a href="https://georgeandrews1.github.io/pdf/283.pdf">The Legendre-Stirling Numbers</a>
%H G. E. Andrews et al., <a href="https://doi.org/10.1016/j.disc.2011.02.028">The Legendre-Stirling numbers</a>, Discrete Math., 311 (2011), 1255-1272.
%F From _G. C. Greubel_, Jun 06 2021: (Start)
%F T(n, k) = Ps(n, n-k+1), where Ps(n, k) = Sum_{j=0..k} (-1)^(j+k)*(2*j+1)*j^n*(1 + j)^n/((j+k+1)!*(k-j)!).
%F Sum_{k=1..n} T(n, k) = A135921(n). (End)
%e Triangle begins:
%e 1;
%e 1 2;
%e 1 8 4;
%e 1 20 52 8;
%e 1 40 292 320 16;
%e 1 70 1092 3824 1936 32;
%e 1 112 3192 25664 47824 11648 64;
%e 1 168 7896 121424 561104 585536 69952 128;
%e ...
%t Ps[n_, k_]:= Sum[(-1)^(j+k)*(2*j+1)*j^n*(1+j)^n/((j+k+1)!*(k-j)!), {j,0,k}];
%t Table[Ps[n, n-k+1], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Jun 06 2021 *)
%o (PARI) T071951(n, k) = sum(i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! );
%o for (n=1, 10, for (k=1, n, print1(T071951(n,n-k+1), ", ")); print); \\ _Michel Marcus_, Nov 24 2019
%o (Sage)
%o def Ps(n,k): return sum( (-1)^(j+k)*(2*j+1)*j^n*(1+j)^n/(factorial(j+k+1) * factorial(k-j)) for j in (0..k) )
%o flatten([[Ps(n,n-k+1) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Jun 06 2021
%Y Cf. A135921 (row sums), A191936.
%Y Mirror of triangle A071951. - _Omar E. Pol_, Jan 10 2012
%K nonn,tabl
%O 1,3
%A _N. J. A. Sloane_, Jun 19 2011
%E More terms from _Omar E. Pol_, Jan 10 2012
%E More terms from _Michel Marcus_, Nov 24 2019