login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201636
Triangle read by rows, n>=0, k>=0, T(0,0) = 1, T(n,k) = Sum_{j=0..k} (C(n+k,k-j)*(-1)^(k-j)*2^(n-j)*Sum_{i=0..j} (C(n+j,i)*|S(n+j-i,j-i)|)), S = Stirling number of first kind.
1
1, 0, 1, 0, 4, 3, 0, 24, 40, 15, 0, 192, 520, 420, 105, 0, 1920, 7392, 9520, 5040, 945, 0, 23040, 116928, 211456, 176400, 69300, 10395, 0, 322560, 2055168, 4858560, 5642560, 3465000, 1081080, 135135, 0, 5160960, 39896064, 117722880, 177580480, 150870720, 73153080, 18918900, 2027025
OFFSET
0,5
COMMENTS
This triangle was inspired by a formula of Vladimir Kruchinin given in A001662.
FORMULA
T(n,1) = A002866(n) for n>0.
T(n,n) = A001147(n).
Sum((-1)^(n-k)*T(n,k)) = A001662(n+1).
EXAMPLE
[n\k 0, 1, 2, 3, 4, 5]
[0] 1,
[1] 0, 1,
[2] 0, 4, 3,
[3] 0, 24, 40, 15,
[4] 0, 192, 520, 420, 105,
[5] 0, 1920, 7392, 9520, 5040, 945,
MAPLE
A201636 := proc(n, k) if n=0 and k=0 then 1 else
add(binomial(n+k, k-j)*(-1)^(n+k-j)*2^(n-j)*
add(binomial(n+j, i)*stirling1(n+j-i, j-i), i=0..j), j=0..k) fi end:
for n from 0 to 8 do print(seq(A201636(n, k), k=0..n)) od;
MATHEMATICA
T[0, 0] = 1; T[n_, k_] := T[n, k] = Sum[Binomial[n+k, k-j]*(-1)^(n+k-j)* 2^(n-j)*Sum[Binomial[n+j, i]*StirlingS1[n+j-i, j-i], {i, 0, j}], {j, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 29 2019 *)
PROG
(Sage)
def A201636(n, k) :
if n==0 and k==0: return 1
return add(binomial(n+k, k-j)*(-1)^(k-j)*2^(n-j)*add(binomial(n+j, i)* stirling_number1(n+j-i, j-i) for i in (0..j)) for j in (0..k))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 13 2012
STATUS
approved