The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136160 Triangle T(n,k) = k*A053120(n,k). 0
 1, 0, 4, -3, 0, 12, 0, -16, 0, 32, 5, 0, -60, 0, 80, 0, 36, 0, -192, 0, 192, -7, 0, 168, 0, -560, 0, 448, 0, -64, 0, 640, 0, -1536, 0, 1024, 9, 0, -360, 0, 2160, 0, -4032, 0, 2304, 0, 100, 0, -1600, 0, 6720, 0, -10240, 0, 5120, -11, 0, 660, 0, -6160, 0, 19712, 0, -25344, 0, 11264 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The definition is equivalent to building the derivatives of the Chebyshev polynomials T(n,x) and listing the coefficients [x^k] dT/dx in row n. Row sums are the squares A000079(n-1). Obtained from A136265 by sign flips and nulling each second diagonal. - R. J. Mathar, Sep 04 2011 REFERENCES Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 8 and pages 42 - 43 LINKS Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31. EXAMPLE 1; 0, 4; -3, 0, 12; 0, -16, 0, 32; 5, 0, -60, 0, 80; 0, 36, 0, -192, 0, 192; -7, 0, 168, 0, -560, 0, 448; 0, -64, 0, 640, 0, -1536,0, 1024; 9, 0, -360, 0, 2160,0, -4032, 0, 2304; 0, 100, 0, -1600, 0, 6720, 0, -10240, 0, 5120; -11, 0, 660, 0, -6160, 0, 19712, 0, -25344, 0, 11264; MATHEMATICA P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; Q[x_, n_] := D[P[x, n + 1], x]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a] CROSSREFS Cf. A053120, A135929. Sequence in context: A176214 A011091 A335821 * A268439 A120362 A201636 Adjacent sequences:  A136157 A136158 A136159 * A136161 A136162 A136163 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Mar 16 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 07:54 EDT 2021. Contains 346464 sequences. (Running on oeis4.)