login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136162
List of prime quadruplets {p, p+2, p+6, p+8}.
5
5, 7, 11, 13, 11, 13, 17, 19, 101, 103, 107, 109, 191, 193, 197, 199, 821, 823, 827, 829, 1481, 1483, 1487, 1489, 1871, 1873, 1877, 1879, 2081, 2083, 2087, 2089, 3251, 3253, 3257, 3259, 3461, 3463, 3467, 3469, 5651, 5653, 5657, 5659, 9431, 9433, 9437
OFFSET
1,1
COMMENTS
{11, 13, 17, 19} is the only prime quadruplet {p, p+2, p+6, p+8} of the form {Q-4, Q-2, Q+2, Q+4} where Q is a product of a pair of twin primes {q, q+2} (for prime q = 3) because numbers Q-2 and Q+4 are for q>3 composites of the form 3*(12*k^2-1) and 3*(12*k^2+1) respectively (k is an integer). Conjecture: {11, 13, 17, 19} is the only prime quadruplet {p, p+2, p+6, p+8} of the form {q*(nextprime(q))-4, q*( nextprime(q))-2, q*( nextprime(q))+2, q*( nextprime(q))+4} where q is a prime (for prime q = 3). - Jaroslav Krizek, Jul 07 2017
LINKS
Eric Weisstein's World of Mathematics, Prime Quadruplet
FORMULA
[a(4n-3),a(4n-2),a(4n-1),a(4n)] = A007530(n) + [0,2,6,8], for all n>0. - M. F. Hasler, Apr 20 2013
MATHEMATICA
Map[Prime[Range @@ #] &, MapAt[# + 1 &, SequencePosition[Differences@ Prime@ Range@ 1200, {2, 4, 2}], {All, -1}]] // Flatten (* Michael De Vlieger, Jul 11 2017 *)
PROG
(PARI) {forprime(p1=0, 70000, p2=p1+2; if(!isprime(p2), next; ); p3=p1+6; if(!isprime(p3), next; ); p4=p1+8; if(!isprime(p4), next; ); print1(p1, ", ", p2, ", ", p3, ", ", p4, ", "))}
(PARI) q=[0, 0, 0, 0]; i=0; forprime(p=5, 1e4, (q[i%4+1]=p)==8+q[i++%4+1]&&print1(vecsort(q)", ")) \\ M. F. Hasler, Apr 20 2013
CROSSREFS
Cf. A007530 (1st quadrisection).
Sequence in context: A124109 A095798 A136142 * A054500 A082684 A096379
KEYWORD
nonn,tabf
AUTHOR
Harry J. Smith, Dec 17 2007
STATUS
approved