login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A136159
A Chebyshev polynomial triangle of the first kind defined by T(n+1,x) = 3x*T(n,x) - T(n-1,x).
1
1, 1, 3, -1, 9, -4, 27, -15, 1, 81, -54, 7, 243, -189, 36, -1, 729, -648, 162, -10, 2187, -2187, 675, -66, 1, 6561, -7290, 2673, -360, 13, 19683, -24057, 10206, -1755, 105, -1, 59049, -78732, 37908, -7938, 675, -16
OFFSET
0,3
COMMENTS
Row sums (unsigned) give A003688, (starting 1, 1, 4, 13, 43, 142, 469, ...).
FORMULA
T(0,x) = 1, T(1,x) = x, T(n+1,x) = 3x*T(n,x) - T(n-1,x).
G.f: (l - tx)/(1 - 3tx + t^2).
Given triangle A136158, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row.
EXAMPLE
First few rows of the polynomials are:
1;
x;
3x^2 - 1;
9x^3 - 4x;
27x^4 - 15x^2 + 1;
81x^5 - 54x^3 + 7x;
243x^6 - 189x^4 + 36x^2 - 1;
729x^7 - 648x^5 + 162x^3 - 10x;
...
PROG
(PARI) P(n) = if (n==0, 1, if (n==1, x, 3*x*P(n-1) - P(n-2)));
row(n) = select(x->x!=0, Vec(P(n))); \\ Michel Marcus, Apr 15 2018
CROSSREFS
KEYWORD
tabf,sign
AUTHOR
Gary W. Adamson, Dec 16 2007
EXTENSIONS
Corrected and extended by Philippe Deléham, Sep 12 2009
Keyword tabf set by Michel Marcus, Apr 15 2018
STATUS
approved