|
|
A136159
|
|
A Chebyshev polynomial triangle of the first kind defined by T(n+1,x) = 3x*T(n,x) - T(n-1,x).
|
|
1
|
|
|
1, 1, 3, -1, 9, -4, 27, -15, 1, 81, -54, 7, 243, -189, 36, -1, 729, -648, 162, -10, 2187, -2187, 675, -66, 1, 6561, -7290, 2673, -360, 13, 19683, -24057, 10206, -1755, 105, -1, 59049, -78732, 37908, -7938, 675, -16
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Row sums (unsigned) give A003688, (starting 1, 1, 4, 13, 43, 142, 469, ...).
|
|
LINKS
|
|
|
FORMULA
|
T(0,x) = 1, T(1,x) = x, T(n+1,x) = 3x*T(n,x) - T(n-1,x).
G.f: (l - tx)/(1 - 3tx + t^2).
Given triangle A136158, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row.
|
|
EXAMPLE
|
First few rows of the polynomials are:
1;
x;
3x^2 - 1;
9x^3 - 4x;
27x^4 - 15x^2 + 1;
81x^5 - 54x^3 + 7x;
243x^6 - 189x^4 + 36x^2 - 1;
729x^7 - 648x^5 + 162x^3 - 10x;
...
|
|
PROG
|
(PARI) P(n) = if (n==0, 1, if (n==1, x, 3*x*P(n-1) - P(n-2)));
row(n) = select(x->x!=0, Vec(P(n))); \\ Michel Marcus, Apr 15 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
tabf,sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|