login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120362
Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the second kind.
2
1, 0, -1, 0, 4, -3, 0, -16, 60, -45, 0, 64, -1008, 2520, -1575, 0, -256, 16320, -105840, 189000, -99225, 0, 1024, -261888, 4055040, -15800400, 21829500, -9823275, 0, -4096, 4193280, -149909760, 1153152000, -3178375200, 3575672100, -1404728325, 0, 16384, -67104768, 5459650560
OFFSET
1,5
COMMENTS
Table has only rows for odd h because all coefficients for even h are zero:
=====|=======================================================================
h \ s| 0 1 2 3 4 5 6
-----|-----------------------------------------------------------------------
1 | 1
3 | 0 -1
5 | 0 4 -3
7 | 0 -16 60 -45
9 | 0 64 -1008 2520 -1575
11 | 0 -256 16320 -105840 189000 -99225
13 | 0 1024 -261888 4055040 -15800400 21829500 -9823275
15 | 0 -4096 4193280 -149909760 1153152000 -3178375200 3575672100
17 | 0 16384 -67104768 5459650560 -79048569600 390486096000 -829555927200
...
From Francesco Franco, Jan 12 2016: (Start)
Conjecture:
If t(h,s) is any term of the previous table after the first column (s>0), then:
t(h,s) = -( 4*s^2*t(h-2,s) + Sum_{j=0..s-1} (t(h-2,j) + t(h,j)) ), with t(1,0) = 1, t(h,0) = 0 for h>1 and t(h,s) = 0 for odd h = 1..2*s-1.
Version without the summation:
t(h,s) = -( 4*s^2*t(h-2,s) - (4*(s-1)^2-1)*t(h-2,s-1) ).
Some example (starting from j=1 in the summation):
t(11,3) = -( 4*t(9,3)*3^2 + Sum_{j=1..2} (t(9,j) + t(11,j)) ) = -( 4*2520*9 + (64-256) + (-1008+16320) ) = -105840; second version:
t(17,5) = -( 4*5^2*t(15,5) - (4*4^2-1)*t(15,4) ) = -( 4*25*(-3178375200) - 63*1153152000 ) = 390486096000.
Also:
t(h,1) = (-1)^(h/2-1/2)*A000302(h/2-3/2) for h>1;
t(h,2) = (-1)^(h/2-3/2)*A115490(h/2-3/2) for h>3;
a(A000124(n)) = 0.
(End)
FORMULA
E(m,phi) = Int_{theta=0..phi} sqrt(1-m*sin^2 theta) d theta.
E(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a( (n+1)/2,s ) * m^s )*phi^n/n!.
EXAMPLE
E(m,phi) = phi - m*phi^3/3! + (4*m-3*m^2)*phi^5/5! + (-16*m+60*m^2-45*m^3)*phi^7/7! + ...
so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi,
the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!.
MAPLE
an := proc(m, n, s) local f: f := coeftayl(EllipticE(sin(phi), m^(1/2)), phi=0, n); coeftayl(f*n!, m=0, s) ; end: nmax := 27 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d, ", an(m, n, s)) ; od ; od;
MATHEMATICA
a[n_, s_] := SeriesCoefficient[EllipticE[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 06 2014 *)
PROG
(PARI) {T(n, k) = my(m = 2*n+1); if( k<0 || n<k, 0, m! * polcoeff( polcoeff( intformal( sqrt( 1 - y * sin(x + x * O(x^m))^2 ) ), m), k))}; /* Michael Somos, May 04 2017 */
CROSSREFS
Cf. A010370, A079484 (diagonal).
Sequence in context: A354464 A136160 A268439 * A201636 A010102 A326477
KEYWORD
sign,tabl,easy
AUTHOR
R. J. Mathar, Jun 26 2006
STATUS
approved