login
A120364
Primes p such that p^2-p-1 and p^2-p+1 are twin primes.
5
3, 7, 67, 139, 379, 457, 1201, 1381, 1549, 1567, 1747, 1789, 2137, 2557, 2647, 2731, 4057, 4159, 4447, 4561, 5179, 5641, 6397, 9157, 9661, 9829, 9967, 10369, 11467, 11677, 12487, 12781, 13339, 13399, 15241, 17299, 17977, 19207, 19417, 19429
OFFSET
1,1
COMMENTS
One more than the entries of (A006093 intersect A088485). - Danny Rorabaugh, May 15 2017
EXAMPLE
3*3-3-1=5 3*3-3+1=7, 5 and 7 twin primes so a(1)=3;
5*5-5-1=19 5*5-5+1=21 composite;
7*7-7-1=41 7*7-7+1=43, 41 and 43 twin primes so a(2)=7.
MATHEMATICA
Select[Prime[Range[2500]], PrimeQ[ #^2 - # - 1] && PrimeQ[ #^2 - # + 1] &] (* Stefan Steinerberger, Jul 22 2006 *)
Select[Prime[Range[2500]], AllTrue[#^2-#+{1, -1}, PrimeQ]&] (* Harvey P. Dale, Jul 25 2021 *)
CROSSREFS
Sequence in context: A041817 A365141 A332259 * A088797 A165589 A184316
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jun 26 2006
EXTENSIONS
More terms from Stefan Steinerberger and Rick L. Shepherd, Jul 22 2006
STATUS
approved