login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the second kind.
2

%I #64 May 04 2017 19:39:51

%S 1,0,-1,0,4,-3,0,-16,60,-45,0,64,-1008,2520,-1575,0,-256,16320,

%T -105840,189000,-99225,0,1024,-261888,4055040,-15800400,21829500,

%U -9823275,0,-4096,4193280,-149909760,1153152000,-3178375200,3575672100,-1404728325,0,16384,-67104768,5459650560

%N Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the second kind.

%C Table has only rows for odd h because all coefficients for even h are zero:

%C =====|=======================================================================

%C h \ s| 0 1 2 3 4 5 6

%C -----|-----------------------------------------------------------------------

%C 1 | 1

%C 3 | 0 -1

%C 5 | 0 4 -3

%C 7 | 0 -16 60 -45

%C 9 | 0 64 -1008 2520 -1575

%C 11 | 0 -256 16320 -105840 189000 -99225

%C 13 | 0 1024 -261888 4055040 -15800400 21829500 -9823275

%C 15 | 0 -4096 4193280 -149909760 1153152000 -3178375200 3575672100

%C 17 | 0 16384 -67104768 5459650560 -79048569600 390486096000 -829555927200

%C ...

%C From _Francesco Franco_, Jan 12 2016: (Start)

%C Conjecture:

%C If t(h,s) is any term of the previous table after the first column (s>0), then:

%C t(h,s) = -( 4*s^2*t(h-2,s) + Sum_{j=0..s-1} (t(h-2,j) + t(h,j)) ), with t(1,0) = 1, t(h,0) = 0 for h>1 and t(h,s) = 0 for odd h = 1..2*s-1.

%C Version without the summation:

%C t(h,s) = -( 4*s^2*t(h-2,s) - (4*(s-1)^2-1)*t(h-2,s-1) ).

%C Some example (starting from j=1 in the summation):

%C t(11,3) = -( 4*t(9,3)*3^2 + Sum_{j=1..2} (t(9,j) + t(11,j)) ) = -( 4*2520*9 + (64-256) + (-1008+16320) ) = -105840; second version:

%C t(17,5) = -( 4*5^2*t(15,5) - (4*4^2-1)*t(15,4) ) = -( 4*25*(-3178375200) - 63*1153152000 ) = 390486096000.

%C Also:

%C t(h,1) = (-1)^(h/2-1/2)*A000302(h/2-3/2) for h>1;

%C t(h,2) = (-1)^(h/2-3/2)*A115490(h/2-3/2) for h>3;

%C a(A000124(n)) = 0.

%C (End)

%H R. J. Mathar, <a href="/A120362/a120362.pdf">Chebyshev series expansion of the Elliptic Integral of the Second Kind</a>

%F E(m,phi) = Int_{theta=0..phi} sqrt(1-m*sin^2 theta) d theta.

%F E(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a( (n+1)/2,s ) * m^s )*phi^n/n!.

%e E(m,phi) = phi - m*phi^3/3! + (4*m-3*m^2)*phi^5/5! + (-16*m+60*m^2-45*m^3)*phi^7/7! + ...

%e so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi,

%e the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!.

%p an := proc(m,n,s) local f: f := coeftayl(EllipticE(sin(phi),m^(1/2)),phi=0,n); coeftayl(f*n!,m=0,s) ; end: nmax := 27 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d,",an(m,n,s)) ; od ; od;

%t a[n_, s_] := SeriesCoefficient[EllipticE[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten (* _Jean-François Alcover_, Jan 06 2014 *)

%o (PARI) {T(n, k) = my(m = 2*n+1); if( k<0 || n<k, 0, m! * polcoeff( polcoeff( intformal( sqrt( 1 - y * sin(x + x * O(x^m))^2 ) ), m), k))}; /* _Michael Somos_, May 04 2017 */

%Y Cf. A010370, A079484 (diagonal).

%K sign,tabl,easy

%O 1,5

%A _R. J. Mathar_, Jun 26 2006