OFFSET
0,6
COMMENTS
A051711 times the coefficient in expansion of W(exp(x)) about x=1, where W is the Lambert function. - Paolo Bonzini, Jun 22 2016
The polynomials with coefficients in triangle A008517, evaluated at -1.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms 29 onwards updated by Sean A. Irvine, April 25 2019)
J. R. Airey, The "converging factor" in asymptotic series and the calculation of Bessel, Laguerre and other functions, Phil. Mag., 24 (1937), 521-552 [ gives 22 terms ].
J. A. Airey, The "converging factor" in asymptotic series and the calculation of Bessel, Laguerre and other functions [Annotated scanned copy]
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
J. M. Borwein and R. M. Corless, Emerging tools for experimental mathematics, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W Function, Advances in Computational Mathematics, (5), 1996, pp. 329-359.
R. M. Corless, D. J. Jeffrey and D. E. Knuth, A sequence of series for the Lambert W Function (section 2.2).
D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, arXiv:math/0501052 [math.CA], 2005.
Vaclav Kotesovec, Graph - the asymptotic ratio
Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
J. C. P. Miller, A method for the determination of converging factors ..., Proc. Camb. Phil. Soc., 48 (1952), 243-254.
J. C. P. Miller, A method for the determination of converging factors ... [Annotated scanned copy]
F. D. Murnaghan, Airey's converging factor, Proc. Nat. Acad. Sci. USA, 69 (1972), 440-441.
F. D. Murnaghan and J. W. Wrench, Jr., The Converging Factor for the Exponential Integral, Report 1535, David Taylor Model Basin, U.S. Dept. of Navy, 1963 [ gives first 67 terms ].
N. J. A. Sloane, Letter to F. D. Murnaghan, Apr 17, 1974
J. W. Wrench, Jr., Letter to N. J. A. Sloane, 24 Apr 1974
P. Wynn, Converging factors for the Weber parabolic cylinder functions of complex argument I A, Proc. Konin. Ned. Akad. Weten., Series A, 66 (1963), 721-736.
P. Wynn, Converging factors for the Weber parabolic cylinder functions of complex argument I B, Proc. Konin. Ned. Akad. Weten., Series A, 66 (1963), 737-754.
P. Wynn, Converging factors for the Weber parabolic cylinder functions ... [Annotated scan of part 2 only]
FORMULA
Let b(n) = 0, 1, -1, 1, 1, -13,.. be the sequence with all signs but one reversed: b(1)=a(1), b(n)=-a(n) for n<>1. Define the e.g.f. B(x) = 2*Sum_{n>=0} b(n)*(x/2)^n/n!. B(x) satisfies exp(B(x)) = 1 + 2*x - B(x). [Bernstein/Sloane S52]
Similarly, c(0)=1, c(n)=-a(n+1) are the alternating row sums of the second-order Eulerian numbers A340556, or c(n) = E2poly(n,-1). - Peter Luschny, Feb 13 2021
a(n) = Sum_{k=0..n-1} (n+k-1)!*Sum_{j=0..k} ((-1)^(j)/(k-j)!*Sum_{i=0..j} (((1/i!)* Stirling1(n-i+j-1,j-i))/(n-i+j-1)!))*2^(n-j-1))), n > 0, a(0)=1. - Vladimir Kruchinin, Nov 11 2012
From Sergei N. Gladkovskii, Nov 24 2012, Aug 22 2013: (Start)
Continued fractions:
G.f.: 2*x - x/G(0) where G(k) = 1 - 2*x*k + x*(k+1)/G(k+1).
G.f.: 2*x - 2*x/U(0) where U(k) = 1 + 1/(1 - 4*x*(k+1)/U(k+1)).
G.f.: A(x) = x/G(0) where G(k) = 1 - 2*x*(k+1) + x*(k+1)/G(k+1).
G.f.: 2*x - x*W(0) where W(k) = 1 + x*(2*k+1)/( x*(2*k+1) + 1/(1 + x*(2*k+2)/( x*(2*k+2) + 1/W(k+1)))). (End)
a(n) = 4^n * Sum_{i=1..n} Stirling2(n,i)*A013703(i)/2^(2*i+1). - Paolo Bonzini, Jun 23 2016
E.g.f.: 1/2*(LambertW(exp(4*x+1))-1). - Vladimir Kruchinin, Feb 18 2018
a(0) = 0; a(1) = 1; a(n) = 2 * a(n-1) - Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Aug 28 2020
EXAMPLE
G.f. = x + x^2 - x^3 - x^4 + 13*x^5 - 47*x^6 - 73*x^7 + 2447*x^8 + ... - Michael Somos, Jun 23 2019
MAPLE
with(combinat); A001662 := proc(n) add((-1)^k*eulerian2(n-1, k), k=0..n-1) end:
seq(A001662(i), i=0..23); # Peter Luschny, Nov 13 2012
MATHEMATICA
a[0] = 0; a[n_] := Sum[ (n+k-1)! * Sum[ (-1)^j/(k-j)! * Sum[ 1/i! * StirlingS1[n-i+j-1, j-i] / (n-i+j-1)!, {i, 0, j}] * 2^(n-j-1), {j, 0, k}], {k, 0, n-1}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 26 2013, after Vladimir Kruchinin *)
a[ n_] := If[ n < 1, 0, 2^(n - 1) Sum[ (-2)^-j StirlingS1[n - i + j - 1, j - i] Binomial[n + k - 1, n + j - 1] Binomial[n + j - 1, i], {k, 0, n - 1}, {j, 0, k}, {i, 0, j}]]; (* Michael Somos, Jun 23 2019 *)
len := 12; gf := (1/2) (LambertW[Exp[x + 1]] - 1);
ser := Series[gf, { x, 0, len}]; norm := Table[n! 4^n, {n, 0, len}];
CoefficientList[ser, x] * norm (* Peter Luschny, Jun 24 2019 *)
PROG
(SageMath)
@CachedFunction
def eulerian2(n, k):
if k==0: return 1
elif k==n: return 0
return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
def A001662(n): return add((-1)^k*eulerian2(n-1, k) for k in (0..n-1))
[A001662(m) for m in (0..23)] # Peter Luschny, Nov 13 2012
(Maxima)
a(n):= if n=0 then 1 else (sum((n+k-1)!*sum(((-1)^(j)/(k-j)!*sum((1/i! *stirling1(n-i+j-1, j-i))/(n-i+j-1)!, i, 0, j))*2^(n-j-1), j, 0, k), k, 0, n-1)); /* Vladimir Kruchinin, Nov 11 2012 */
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Dec 07 1999
Reverted to converging factors definition by Paolo Bonzini, Jun 23 2016
STATUS
approved