login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274447
Numerators in expansion of W(exp(x)) about x=1, where W is the Lambert function.
3
1, 1, 1, -1, -1, 13, -47, -73, 2447, -16811, -15551, 1726511, -18994849, 10979677, 2983409137, -48421103257, 135002366063, 778870772857, -232033147779359, 1305952009204319, 58740282660173759, -1862057132555380307, 16905219421196907793, 527257187244811805207
OFFSET
0,6
COMMENTS
a(17) is the first term that differs from A001662.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..446 (first 151 terms from G. C. Greubel)
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W Function, Advances in Computational Mathematics, (5), 1996, pp. 329-359.
R. M. Corless, D. J. Jeffrey and D. E. Knuth, A sequence of series for the Lambert W Function (section 2.2).
FORMULA
a(n) = A001662(n)/gcd(A001662(n),A051711(n)).
From Vladimir Kruchinin, Nov 11 2012: (Start)
a(n) = numerator(1/n!*(Sum_{u=2..n} stirling2(n,u)*(Sum_{k=1..u-1} ((u+k-1)!*Sum_{j=1..k} 2^(-u-j)/(k-j)!*Sum_{l=1..j} (-1)^(l)/((j-l)!)*Sum_{i=0..l} (l^(u+j-i-1))/((l-i)!*i!*(u+j-i-1)!)))+1/2)).
a(n) = numerator(1/n!*Sum_{k=0..n-1} (n+k-1)!*Sum_{j=0..k} ((-1)^(j)/(k-j)!*Sum_{i=0..j} ((1/i!)*Stirling1(n-i+j-1,j-i))/(n-i+j-1)!))*2^(n-j-1)), n>0, a(0)=1. (End)
a(n) = numerator(q(n)/n!) where q(n) = add_{k=0..n-1}(-1)^k*E2(n-1,k) if n>0 and 1 otherwise, E2 the second-order Eulerian numbers. - Peter Luschny, Nov 13 2012
a(n) := numerator(1/n!*Sum_{i=1..n} Stirling2(n,i)*A013703(i)/2^(2*i+1)). - Paolo Bonzini, Jun 23 2016
EXAMPLE
W(exp(x)) = 1 + (x-1)/2 + (x-1)^2/16 - (x-1)^3/192 - ...
MAPLE
a:= n-> numer(coeftayl(LambertW(exp(x)), x=1, n)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 08 2012
# For large n much faster is:
q := proc(n) if n=0 then 1 else add((-1)^k*combinat[eulerian2](n-1, k), k=0..n-1) fi end: A001662 := n -> numer(q(n)/n!):
seq(A001662(n), n=0..100): # Peter Luschny, Nov 13 2012
MATHEMATICA
CoefficientList[ Series[ ProductLog[ Exp[1+x] ], {x, 0, 22}], x] // Numerator (* Jean-François Alcover, Oct 15 2012 *)
a[0] = 1; a[n_] := 1/n!*Sum[(n+k-1)!*Sum[(-1)^(j)/(k-j)!*Sum[1/i!* StirlingS1[n-i+j-1, j-i]/(n-i+j-1)!, {i, 0, j}]*2^(n-j-1), {j, 0, k}], {k, 0, n-1}] // Numerator; Array[a, 30, 0] (* Jean-François Alcover, Feb 13 2016, after Vladimir Kruchinin *)
PROG
(Sage)
@CachedFunction
def eulerian2(n, k):
if k==0: return 1
if k==n: return 0
return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
def q(n):
return add((-1)^k*eulerian2(n-1, k) for k in (0..n-1)) if n>0 else 1
A001662 = lambda n: (q(n)/factorial(n)).numerator()
[A001662(n) for n in (0..22)] # Peter Luschny, Nov 13 2012
(Maxima)
a(n):=num(if n=0 then 1 else 1/n!*(sum((n+k-1)!*sum(((-1)^(j)/(k-j)!*sum((1/i!*stirling1(n-i+j-1, j-i))/(n-i+j-1)!, i, 0, j))*2^(n-j-1), j, 0, k), k, 0, n-1))); /* Vladimir Kruchinin, Nov 11 2012 */
CROSSREFS
KEYWORD
sign,easy,frac
AUTHOR
Paolo Bonzini, Jun 23 2016
STATUS
approved