login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274445
a(n) is the smallest composite squarefree number k such that (p+n) | (k-1) for every prime p dividing k.
4
385, 91, 65, 451, 33, 170171, 145, 1261, 161, 78409, 469, 294061, 649, 13051, 1921, 5251, 721, 8453501, 145, 300243, 1121, 47611, 3601, 1915801, 1057, 41311, 545, 5671, 1261, 19723133, 4321, 37759, 6913, 451, 4033, 102821, 1513, 40891, 11521, 1259497, 721, 364781, 145
OFFSET
1,1
LINKS
EXAMPLE
For n=1, prime factors of 385 are 5, 7 and 11. (385 - 1)/(5 + 1) = 384/6 = 64, (385 - 1)/(7 + 1) = 384/8 = 48 and (385 - 1)/(11 + 1) = 384/12 = 32.
For n=2, prime factors of 91 are 7 and 13. (91 - 1)/(7 + 2) = 90/9 = 10 and (91 - 1)/(13 + 2) = 90/15 = 6.
MAPLE
with(numtheory); P:=proc(q) local d, k, n, ok, p;
for k from 1 to q do for n from 2 to q do
if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do
if not type((n-1)/(p[d][1]+k), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
MATHEMATICA
t = Select[Range[10^6], SquareFreeQ@ # && CompositeQ@ # &]; Table[ SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, Divisible[k - 1, # + n] &]]], {n, 17}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)
PROG
(PARI) isok(k, n)=if (! issquarefree(k), return (0)); vp = factor(k) [, 1]; if (#vp == 1, return (0)); for (i=1, #vp, if ((k-1) % (n+vp[i]), return (0)); ); 1;
a(n) = my(k=2); while (! isok(k, n), k++); k; \\ Michel Marcus, Jun 28 2016
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 23 2016
EXTENSIONS
a(18), a(24), a(30) added by Giovanni Resta, Jun 23 2016
More terms from Michel Marcus, Jun 28 2016
STATUS
approved