login
A229273
Composite squarefree numbers n such that p-tau(n) divides n-sigma(n), where p are the prime factors of n, tau(n) = A000005(n) and sigma(n) = A000203(n).
7
6, 10, 15, 22, 78, 138, 273, 483, 3243, 3913, 104377, 477337, 1537627, 1904487, 2508961, 3326829, 3716167, 5148949, 6154017, 6686113, 11521842, 14355679, 16872583, 25165777, 28029883, 31232337, 32403342, 50725419, 57396469, 68815381, 86850249, 98242959
OFFSET
1,1
COMMENTS
Subsequence of A120944.
EXAMPLE
Prime factors of 273 are 3, 7, 13 and sigma(273) = 448, tau(273) = 8.
273 - 448 = -175 and (-175) / (3 - 8) = 35, (-175) / (7 - 8) = 175, (-175) / (13 - 8) = -35.
MAPLE
with (numtheory); P:=proc(q) local a, b, c, i, ok, p, n;
for n from 2 to q do if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
else if not type((n-sigma(n))/(a[i][1]-tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(2*10^6);
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Sep 19 2013
EXTENSIONS
a(20)-a(33) from Giovanni Resta, Sep 20 2013
First term deleted by Paolo P. Lava, Sep 23 2013
STATUS
approved