login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226448
Composite squarefree numbers k such that the ratios (k - 1/2)/(p - 1/2) are integers for each prime p dividing k.
6
260054438, 597892523, 1200695738, 3287998643, 3423456563, 10524308498, 13292859563, 15646705718, 19441707170, 33309521438, 38848586123, 43312628678, 61899936935, 72422400713, 75439031063, 85338414662, 112419230963, 132624705038, 136084511063, 141236121758
OFFSET
1,1
COMMENTS
Also composite squarefree numbers k such that (2p - 1) | (2k - 1).
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..45 (terms < 10^12)
EXAMPLE
3287998643 is a term since it is equal to 743*787*5623 and 3287998643-1/2 divided by 743-1/2, 787-1/2 and 5623-1/2 gives 3 integers, namely 4428281, 4180545 and 584793.
MAPLE
with(numtheory); ListA226448:=proc(i, j) local c, d, n, ok, p;
for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or not type((n-j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: ListA226448(10^9, 1/2); # Paolo P. Lava, Oct 06 2013
PROG
(PARI) is(n, P)=n=2*n-1; for(i=1, #P, if(n%(2*P[i]-1), return(0))); 1
list(lim, P=[], n=1, mx=lim\2)=my(v=[], t); if(#P>1&&is(n, P), v=[n]); P=concat(P, 0); forprime(p=2, min(lim, mx), P[#P]=p; t=list(lim\p, P, n*p, p-1); if(#t, v=concat(v, t))); v \\ Charles R Greathouse IV, Jun 07 2013
KEYWORD
nonn
AUTHOR
Paolo P. Lava and Giovanni Resta, Jun 07 2013
STATUS
approved